共检索到 12

Introduction: Permafrost and seasonally frozen soil are widely distributed on the Qinghai-Tibetan Plateau, and the freezing-thawing cycle can lead to frequent phase changes in soil water, which can have important impacts on ecosystems.Methods: To understand the process of soil freezing-thawing and to lay the foundation for grassland ecosystems to cope with complex climate change, this study analyzed and investigated the hydrothermal data of Xainza Station on the Northern Tibet from November 2019 to October 2021.Results and Discussion: The results showed that the fluctuation of soil temperature showed a cyclical variation similar to a sine (cosine) curve; the deep soil temperature change was not as drastic as that of the shallow soil, and the shallow soil had the largest monthly mean temperature in September and the smallest monthly mean temperature in January. The soil water content curve was U-shaped; with increased soil depth, the maximum and minimum values of soil water content had a certain lag compared to that of the shallow soil. The daily freezing-thawing of the soil lasted 179 and 198 days and the freezing-thawing process can be roughly divided into the initial freezing period (November), the stable freezing period (December-early February), the early ablation period (mid-February to March), and the later ablation period (March-end of April), except for the latter period when the average temperature of the soil increased with the increase in depth. The trend of water content change with depth at all stages of freezing-thawing was consistent, and negative soil temperature was one of the key factors affecting soil moisture. This study is important for further understanding of hydrothermal coupling and the mechanism of the soil freezing-thawing process.

期刊论文 2024-06-20 DOI: 10.3389/fenvs.2024.1411704

The accelerated or decelerated freezing-thawing processes of the active layer in Xing'an permafrost regions are crucial for the protection of permafrost. To better understand the freezing-thawing processes of the active layer and its driving factors, according to the observation from 2017 to 2020 of soil temperature and water content in the active layer of forest and peatland in two representative hemiboreal ecosystems in the Da Xing'anling Mountains, Northeast China, the study explored in detail the effects of climatic conditions and local factors on the hydrothermal and freezing-thawing processes of active layer soils. The results showed that during the freezing-thawing cycles of 2017-2020, freezing and thawing start times in the peatland and forest ecosystems soils were generally delayed, and it took longer for the active layer soil to completely thaw than to freeze. The annual average soil temperature in the peatland's active layer (5-80 cm) was 0.7-2.0 degrees C lower than that in the forest, and the annual average soil moisture content on the peatland was 5.5%-26.7% higher than that in the forest. Compared with the forest ecosystem soils, the ground surface freezing time of the peatland was delayed by 3-10 d, and the freezing rate decreased by 1.1-1.5 cm d-1, while the beginning time of thawing was advanced by 22-27 d, and the thawing rate decreased by 1.3-1.4 cm d-1. In the process of decreasing soil temperature and increasing soil moisture content, the freezing and thawing rate of the active layer would be reduced, decelerating the freezing-thawing processes of the active layer in the process of decreasing soil temperature and increasing soil moisture content. The results provide the key original data for studying the formation and evolution of active layer and permafrost in the Xing'an permafrost regions in Northeast China and can be used to validate the prediction of ecosystem succession under the combined influences of climate change and permafrost degradation.

期刊论文 2023-02-01 DOI: 10.1016/j.accre.2023.01.002 ISSN: 1674-9278

Study region: Upper Heihe River Basin, Northwest China. Study focus: We investigated potential climate change under three Representative Concentration Pathways (RCP 2.6, 4.5, and 8.5) and their impacts on frozen ground in the upper Heihe River Basin using the ensemble climate data from eight general circulation models and the Soil and Water Assessment Tool (SWAT). New hydrological insights for the region: Air and ground freezing indices declined significantly during the baseline period (1976-2015), whereas the thawing indices increased, indicating the heat accumulation in study area. The frost depth, which refers to the potential frost depth of active layer in permafrost areas and the maximum frost depth in seasonally frozen areas, decreased significantly at the rate of 3 cm/10 yr. The SWAT-simulation and gray relational analysis revealed that soil water was controlled by precipitation and frost depth in spring and autumn. Compared to that of the baseline, the projected frost depth is projected to decline by 0.07-0.1 m during the near future (2020-2059) and 0.08-0.36 m for the far future (2060-2099). In addition, we developed a long-term warning system, which indicates that the degree of frozen ground degradation would be mild during the near future and would be severe for the far future under RCP 8.5. This study provides valuable insights into the protection of frozen-ground in the Upper Heihe River Basin.

期刊论文 2022-08-01 DOI: 10.1016/j.ejrh.2022.101137

Ground temperature plays a significant role in the interaction between the land surface and atmosphere on the Tibetan Plateau (TP). Under the background of temperature warming, the TP has witnessed an accelerated warming trend in frozen ground temperature, an increasing active layer thickness, and the melting of underground ice. Based on high-resolution ground temperature data observed from 1997 to 2012 on the northern TP, the trend of ground temperature at each observation site and its response to climate change were analyzed. The results showed that while the ground temperature at different soil depths showed a strong warming trend over the observation period, the warming in winter is more significant than that in summer. The warming rate of daily minimum ground temperature was greater than that of daily maximum ground temperature at the TTH and MS3608 sites. During the study period, thawing occurred earlier, whereas freezing happened later, resulting in shortened freezing season and a thinner frozen layer at the BJ site. And a zero-curtain effect develops when the soil begins to thaw or freeze in spring and autumn. From 1997 to 2012, the average summer air temperature and precipitation in summer and winter from six meteorological stations along the Qinghai-Tibet highway also demonstrated an increasing trend, with a more significant temperature increase in winter than in summer. The ground temperature showed an obvious response to air temperature warming, but the trend varied significantly with soil depths due to soil heterogeneity.

期刊论文 2021-08-01 DOI: http://dx.doi.org/10.3724/SP.J.1226.2021.20024 ISSN: 1674-3822

Ground temperature plays a significant role in the interaction between the land surface and atmosphere on the Tibetan Plateau (TP). Under the background of temperature warming, the TP has witnessed an accelerated warming trend in frozen ground temperature, an increasing active layer thickness, and the melting of underground ice. Based on high-resolution ground temperature data observed from 1997 to 2012 on the northern TP, the trend of ground temperature at each observation site and its response to climate change were analyzed. The results showed that while the ground temperature at different soil depths showed a strong warming trend over the observation period, the warming in winter is more significant than that in summer. The warming rate of daily minimum ground temperature was greater than that of daily maximum ground temperature at the TTH and MS3608 sites. During the study period, thawing occurred earlier, whereas freezing happened later, resulting in shortened freezing season and a thinner frozen layer at the BJ site. And a zero-curtain effect develops when the soil begins to thaw or freeze in spring and autumn. From 1997 to 2012, the average summer air temperature and precipitation in summer and winter from six meteorological stations along the Qinghai-Tibet highway also demonstrated an increasing trend, with a more significant temperature increase in winter than in summer. The ground temperature showed an obvious response to air temperature warming, but the trend varied significantly with soil depths due to soil heterogeneity.

期刊论文 2021-08-01 DOI: 10.3724/SP.J.1226.2021.20024 ISSN: 1674-3822

How methane (CH4) fluxes from alpine peatlands, especially during freeze-thaw cycles, affect the global CH4 budget is poorly understood. The present research combined the eddy covariance method, incubation experiments and high-throughput sequencing to observe CH4 flux from an alpine fen during thawing-freezing periods over a period of four years. The response of CH4 production potential and methanogenic archaea to climate change was analyzed. We found a relatively high mean annual cumulative CH4 emission of 37.7 g CH4-C m(-2). The dominant contributor to CH4 emission was the thawing period: warmer, longer thawing periods contributed 69.1-88.6% to the annual CH4 budget. Non-thawing periods also contributed, with shorter frozen-thawing periods accounting for up to 18.5% and shorter thawing-freezing periods accounting for up to 8.8%. Over the course of a year, emission peaked in the peak growing season and at onset of thawing and freezing. In contrast, emission did not vary substantially during the frozen period. Daily mean emission was highest during the thawing period and lowest during the frozen period. Diurnal patterns of CH4 emission were similar among the four periods, with peaks ranging from 12:00 to 18:00 and the lowest emission around 00:00. Water table and temperature were the dominant factors controlling CH4 emissions during different thawing-freezing periods. Our results suggest that CH4 emission from peatland will change substantially as CH4 production, microbial composition, and patterns of thawing-freezing cycles change with global warming. Therefore, frequent monitoring of CH4 fluxes in more peatlands and in situ monitoring of methanogenesis and related microbes are needed to provide a clear picture of CH4 fluxes and the thawing-freezing processes that affect them.

期刊论文 2021-02-15 DOI: 10.1016/j.agrformet.2020.108279 ISSN: 0168-1923

The ground surface soil heat flux (G(0)) is very important to simulate the changes of frozen ground and the active layer thickness; in addition, the freeze-thaw cycle will also affect G(0) on the Tibetan Plateau (TP). As G(0) could not be measured directly and soil heat flux is difficult to be observed on the TP in situ due to its high altitude and cold environment, most of previous studies have directly applied existing remote sensing-based models to estimate G(0) without assessing whether the selected model is the best one of those models for those study regions. We use in-situ observation data collected at 12 sites combined with Moderate Resolution Imaging Spectroradiometer (MODIS) data (MOD13Q1, MODLT1D, MOD09CMG, and MCD15A2H) and the China meteorological forcing dataset (CMFD-SRad and CMFD-LRad) to validate the main models during the freeze-thaw process. The results show that during the three stages (complete freezing (CF), daily freeze-thaw cycle (DFT), and complete thawing (CT)) of the freeze-thaw cycle, the root mean square error (RMSE) between the models' G(0) simulated value and the corresponding G(0) measured value is the largest in the CT phase and smallest in the CF phase. The simulated results of the second group schemes (SEBAL, Ma, SEBAL(adj), and Ma(adj)) were slightly underestimated, more stable, and closer to the measured values than the first group schemes (Choudhury, Clawson, SEBS, Choudhury(adj), Clawson(adj), and SEBSadj). The Ma(adj) scheme is the one with the smallest RMSE among all the schemes and could be directly applied across the entire TP. Then, four possible reasons leading to the errors of the main schemes were analyzed. The soil moisture affecting the ratio G(0)/R-n and the phase shift between G(0) and net radiation R-n are not considered in the schemes directly; the scheme cannot completely and correctly capture the direction of G(0); and the input data of the schemes to estimate the regional G(0) maybe bring some errors into the simulated results. The results are expected to provide a basis for selecting remote sensing-based models to simulate G(0) in frozen ground dynamics and to calculate evapotranspiration on the TP during the freeze-thaw process. The scheme Ma(adj) suitable for the TP was also offered in the study. We proposed several improvement directions of remote sensing-based models in order to enhance understanding of the energy exchange between the ground surface and the atmosphere.

期刊论文 2020-02-01 DOI: http://dx.doi.org/10.3390/rs12030501

The freezing-thawing cycle is a basic feature of a frozen soil ecosystem, and it affects the growth of alpine vegetation both directly and indirectly. As the climate changes, the freezing-thawing mode, along with its impact on frozen soil ecosystems, also changes. In this research, the freezing-thawing cycle of the Nagqu River Basin in the Qinghai-Tibet Plateau was studied. Vegetation growth characteristics and microbial abundance were analyzed under different freezing-thawing modes. The direct and indirect effects of the freezing-thawing cycle mode on alpine vegetation in the Nagqu River Basin are presented, and the changing trends and hazards of the freezing-thawing cycle mode due to climate change are discussed. The results highlight two major findings. First, the freezing-thawing cycle in the Nagqu River Basin has a high-frequency mode (HFM) and a low-frequency mode (LFM). With the influence of climate change, the LFM is gradually shifting to the HFM. Second, the alpine vegetation biomass in the HFM is lower than that in the LFM. Frequent freezing-thawing cycles reduce root cell activity and can even lead to root cell death. On the other hand, frequent freezing-thawing cycles increase microbial (Bradyrhizobium, Mesorhizobium, and Pseudomonas) death, weaken symbiotic nitrogen fixation and the disease resistance of vegetation, accelerate soil nutrient loss, reduce the soil water holding capacity and soil moisture, and hinder root growth. This study provides a complete response mechanism of alpine vegetation to the freezing-thawing cycle frequency while providing a theoretical basis for studying the change direction and impact on the frozen soil ecosystem due to climate change.

期刊论文 2019-10-01 DOI: 10.3390/w11102122

Soil freezing-thawing cycle (FTC) is an important factor controlling C dynamics in mid-high latitude regions, especially in the permafrost regions impacted by global warming. Nonetheless, the response of C cycling in the deeper active layers of permafrost regions to FTC remains far from certain. We aimed to characterize the emission of CO2 from soils of multiple depths as impacted by FTC and its relationship with active organic C (OC) and enzyme activities. We collected soil samples from three soil layers (0-15, 15-30, and 30-45 cm) of an undisturbed peatland in the Da Xing'anling Mountains, NE China, and then subjected them to various freezing (10 to -10 degrees C) and thawing (-10 to 10 degrees C) cycles. Soil CO2 emissions, two active OC fractions, and activities of three enzymes were monitored during incubation periods. At the thawing stage of the first FTC, CO2 emission rates in the three soil layers presented transient peaks being approximate to 1.6-1.7 times higher than those of the unfrozen control sample. Although FTC did not change the overall patterns of decreasing CO2 emission along the soil profile, FTC significantly reduced the amount of CO2 emission when compared with the unfrozen control sample, possibly because the small CO2 emission at the freezing stage neutralized the peak of CO2 emission at the thawing stage. This study suggests that in the active layer of permafrost peatlands, CO2 emission during FTCs may be lower than the emission under higher temperatures, but experiment with more temperature gradients should be encouraged to verify this conclusion in the future. Meanwhile, FTC significantly increased water extracted OC release from the three soil layers, approximate to 1.2-1.6 times higher compared to the unfrozen control sample, indicating that soil carbon loss in the form of leachate may increase during freezing-thawing periods. Additionally, the CO2 emissions impacted by FTCs were significantly correlated with active OC fractions and enzyme activities, which indicated that active OC and enzymes were sensitive to FTCs, and surviving microbes and enzymes might use the increased liable substrates and induce the CO2 emission during freezing-thawing periods.

期刊论文 2014-08-01 DOI: 10.1002/jpln.201300309 ISSN: 1436-8730

In the future, climate models predict an increase in global surface temperature and during winter a changing of precipitation from less snowfall to more raining. Without protective snow cover, freezing can be more intensive and can enter noticeably deeper into the soil with effects on C cycling and soil organic matter (SOM) dynamics. We removed the natural snow cover in a Norway spruce forest in the Fichtelgebirge Mts. during winter from late December 2005 until middle of February 2006 on three replicate plots. Hence, we induced soil frost to 15cm depth (at a depth of 5 cm below surface up to -5 degrees C) from January to April 2006, while the snow-covered control plots never reached temperatures < 0 degrees C. Quantity and quality of SOM was followed by total organic C and biomarker analysis. While soil frost did not influence total organic-C and lignin concentrations, the decomposition of vanillyl monomers (Ac/Ad)(V) and the microbial-sugar concentrations decreased at the end of the frost period, these results confirm reduced SOM mineralization under frost. Soil microbial biomass was not affected by the frost event or recovered more quickly than the accumulation of microbial residues such as microbial sugars directly after the experiment. However, in the subsequent autumn, soil microbial biomass was significantly higher at the snow-removal (SR) treatments compared to the control despite lower CO2 respiration. In addition, the water-stress indicator (PLFA [cy17:0 + cy19:0] / [16:1 omega 7c + 18:1 omega 7c]) increased. These results suggest that soil microbial respiration and therefore the activity was not closely related to soil microbial biomass but more strongly controlled by substrate availability and quality. The PLFA pattern indicates that fungi are more susceptible to soil frost than bacteria.

期刊论文 2011-10-01 DOI: 10.1002/jpln.201100009 ISSN: 1436-8730
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共12条,2页