Uneven displacement of permafrost has become a major concern in cold regions, particularly under repeated freezing-thawing cycles. This issue poses a significant geohazard, jeopardizing the safety of transportation infrastructure. Statistical analyses of thermal penetration suggest that the problem is likely to intensify as water erosion expands, with increasing occurrences of uneven displacement. To tackle the challenges related to mechanical behavior under cyclic loading, the New Geocell Soil System has been implemented to mitigate hydrothermal effects. Assessment results indicate that the New Geocell Soil System is stable and effective, offering advantages in controlling weak zones on connecting slopes and reducing uneven solar radiation. Consequently, the New Geocell Soil System provides valuable insights into the quality of embankments and ensures operational safety by maintaining displacement at an even level below 1.0 mm. The thermal gradient is positive, with displacement below 6 degrees C/m, serving as a framework for understanding the stability of the subgrade. This system also enhances stress and release the sealing phenomenon.
Roads in places with seasonal frost undergo several freeze-thaw (F-T) cycles annually, resulting in variable degrees of deterioration in the mechanical properties of the subgrade. To methodically investigate the mechanical properties of subgrade clay during freeze-thaw cycles and to develop a precise constitutive model, triaxial tests were conducted under the most unfavorable soil conditions. The studies indicate that the degrading impact of the freeze-thaw cycle on the mechanical characteristics of the soil predominantly transpires during the initial freeze-thaw cycle. Soil strength reaches its minimum after the third freeze-thaw cycle, followed by a slight increase, and ultimately stabilizes between the fifth and seventh cycles. The maximum strength reduction at confining pressures of 100 kPa, 200 kPa, and 300 kPa was 39%, 37%, and 33%, respectively. As confining pressure escalates, the reduction in soil strength lessens. The soil demonstrates differing degrees of degradation following F-T cycles at both high and low compaction levels, with the degradation becoming increasingly evident as compaction intensifies. Utilizing the experimental database, a genetic algorithm (GA) enhanced backpropagation neural network (BPNN) model (GA-BPNN) and a BP-aided Duncan-Chang (D-C) model were developed to forecast the mechanical properties of freeze-thaw clay. The R2 values for the two models on the test set were 0.995 and 0.967, respectively. The efficacy of these two models demonstrates that machine learning can attain commendable outcomes in extensive data structures (total stress-strain curve) as well as exhibit superior performance in limited data (model parameters) while developing the constitutive model of soil.
The physicochemical combination method (PCCM) is a new integrated method for treating and reusing large volumes of slurry-like mud (MS). To study the effects of freezing-thawing (FT) cycles on the mechanical properties of MS treated by the PCCM, unconfined compression tests (UCTs) and microstructural tests are both conducted on PCCM-treated MS samples with different combinations of FT cycles, initial water contents (wei), and cementitious binder contents (wc). The experimental results indicate that the unconfined compressive strength (UCS) and the elastic modulus (E) of PCCM-treated MS decrease exponentially when the FT cycles increase from 0 to 15. For the PCCM-treated MS samples subjected to 15 FT cycles, the reduction degree of their strength, as well as deformation resistance, is more sensitive to the variation of wc compared to that of wei. Meanwhile, the UCS and E of PCCM-treated MS samples are higher than those of the corresponding MS samples treated by the conventional cement solidification method (CCSM). The superior resistance to FT cycles of PCCM-treated MS is attributed to the presence of APAM, which not only facilitates the aggregation of soil particles but also enhances the dewatering efficiency of MS. Notably, the E/UCS value of CCSM-treated MS is 1.25 times larger than that of PCCM-treated MS, indicating the application of PCCM can significantly enhance the toughness of the treated MS.
The waste tire rubber may be incorporated with the cement soil to improve its frost resistance. However, it remains a significant challenge to optimise the rubber content between its mechanical strength and durability under freeze-thaw conditions. In this study, the macroscopic mechanical properties of ordinary cement soil and rubber-cement soil (with particle sizes of 30 and 60 mesh) were explored under different freeze-thaw cycles (0, 3, 6, 9, 15) by taking the wave propagation and unconfined compressive strength (UCS) tests. Subsequently, a series of scanning electron microscope (SEM) and X-ray diffraction (XRD) tests were conducted to analyse the microstructure of the specimens, further clarifying the freeze-thaw damage mechanisms in rubber-cement soil. The results show that freeze-thaw cycles cause irreversible internal damage to the cement soil, leading to continuous reductions in both wave velocity and UCS. After 15 freeze-thaw cycles, the wave velocity loss rates are 95%, 72.2%, and 89.7% for ordinary cement soil, cement soil mixed with 30-mesh and 60-mesh rubber particles, respectively. The corresponding UCS loss rates are 95.4%, 82.7%, and 89.2%, respectively. The above results suggest that 30-mesh rubber-cement soil exhibits superior frost resistance. From a microstructural perspective, the rubber particles delay and inhibit the propagation of frost heaving cracks, forming a denser spatial structure for calcium silicate hydrates (C-S-H) gel, thereby improving the freeze-thaw resistance. By integrating macroscopic mechanical testing and microstructural analysis, this study reveals the mechanical properties and damage mechanism of rubber-cement soil under freeze-thaw conditions, providing valuable insights for its engineering applications.
Biopolymer-fiber treated soil has great application potential in civil engineering with better mechanical properties and environmental sustainability. However, the durability and strength degradation rules of biopolymerfiber treated soil with different residual moisture content (RMC) values subjected to severe weathering cycles remain unclear. The effects of wetting-drying (W-D) and freezing-thawing (F-T) cycles on xanthan gum biopolymer-jute fiber treated soil (XJTS) with different RMC values are experimentally investigated. Particular emphasis is placed on mechanical strength characteristics, stress-strain behavior, failure patterns, and associated microstructural evolution encompassing pore structure modifications. The results show that when the RMC value of the XJTS material is higher, its mechanical strength is more affected by the F-T cycle. The effect of the W-D cycles on the pore size and distribution in the XJTS material was more significant than F-T cycles, and the percentage of microfissure (>100 mu m) increased from 6.76 % to 50.01 % after the 20th W-D cycle.
Binders can enhance soil properties and improve their suitability as subgrade fillers; however, the cementing effect and strength properties of solidified soil are highly susceptible to external environmental factors. This study evaluated the strength and durability of solidified sludge soil (PSCS) with varying binder (PSC) contents through unconfined compressive strength (UCS) tests combined with drying-wetting (D-W) and freezing-thawing (F-T) cycles, and identified the optimal binder content for performance enhancement. Additionally, mercury intrusion porosimetry (MIP) tests were conducted to analyze pore structure changes and explore the synergistic effects between hydration reactions and moisture variations induced by D-W/F-T cycles. Results indicate that binder content > 15 % significantly enhances PSCS strength and durability, with 15 % content (PSCS15) demonstrating the best economic advantage. During D-W/F-T cycles, the synergy between hydration reactions and moisture variations affects the pore structure, resulting in strength changes. For example, during D-W cycles, moisture movement causes the collapse of pores > 30 mu m, while hydration products fill the pores, decreasing the porosity of 5-30 mu m. Subsequently, moisture variations weaken the cementation effect, leading to a increase in the porosity of 5-30 mu m. This process causes the strength to fluctuate, showing a first decrease, followed by an increase, and then another decrease, with an overall reduction of 21.6 %. During the drying stage of D-W cycles, moisture evaporation inhibits hydration reactions in soil. In contrast, during F-T cycles, moisture remains in different physical states (e.g., solid ice crystals and liquid water). These moisture variations causing the collapse of pores >30 mu m, while hydration products fill the larger pores, increasing the porosity of 1-10 mu m. The strength first decreases and then increases, with an overall increase of 38.7 %. Furthermore, this study demonstrates that until the hydration process is completed, D-W cycles have a more significant negative impact on PSCS compared to F-T cycles.
Insight into the growth of internal microstructure and surface morphology is critical for understanding the robustness of red sandstone artifacts in frigid environments. Since freeze-thaw (F-T) cycles can exacerbate the surface deterioration of water-bearing sandstone, a series of investigation on fresh and weathered water-bearing sandstone samples with different F-T cycle numbers (i.e. 0-100) is performed in this study, including three-dimensional (3D) laser scanning, scanning electron microscope (SEM) and computed tomography (CT) scanning tests, thermal property tests, Brazilian tests, and multi-field numerical simulations. Our results demonstrate that with increasing F-T cycles, the surface fractal dimension and specific surface area of red sandstone samples increase, and the pore size distribution inside rocks shifts from ultrananopores (10-100 nm) to micro-pores (0.1-100 mm) and ultramicropores (100 mm & thorn;). Spatially, the pores generated by the F-T cycles are more prominent near the surfaces of rock samples. Numerical simulation indicates that the uneven pore distribution leads to surface degradation. After 100 F-T cycles, the intergranular (IG) cement of the samples cracks, and the IG fractures are widened; eventually, due to the structural integrity weakening, the tensile strength is drastically reduced by over half. The thermal properties of the water-saturated sandstone can be improved during the F-T cycles, and a strong coefficient of determination of 0.98 exists between the fractal dimensions of sandstone surface and the tensile strength. When assessing the mechanical properties of stone artifacts under F-T cycles, the morphological damage of red sandstone should first be investigated when in situ sampling is inappropriate. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
In the current study, the durability of a clayey-sand stabilized with copper-slag (CS)-based geopolymer and alkaline activator solution (AAS) is investigated in freezing-thawing (F-T) cycles. For this purpose, tests including Atterberg limits, pH, standard Proctor compaction, unconfined compressive strength (UCS), accumulated loss of mass (ALM), swell and shrinkage, ultrasonic P-wave velocity, the toxicity characteristic leaching procedure (TCLP), and scanning electron microscopy (SEM) analysis were conducted. Various contents of CS (i.e., 0, 10%, and 15%) and 8 and 11 M NaOH were assessed in 0, 1, 3, 6, 9, and 12 cycles. The AAS contained 70% of Na2SiO3 and 30% of NaOH. Also, the weight ratio of CS to ASS was 1 (CS/ASS = 1). According to the TCLP test, the CS-based geopolymer stabilized samples have no environmental hazards. The results illustrated that the strength and stiffness of untreated soil increased with an increase in F-T cycles until cycle 3. For samples with 11 M NaOH concentration, loss of strength and stiffness were observed due to F-T cycles. Furthermore, the sample with 8 M NaOH showed hybrid behavior (i.e., an increase in strength and stiffness until cycle 3), similar to that of untreated soil, and then declined until cycle 9, similar to soil treated with 11 M NaOH. Based on the microstructural analysis, higher microcracks were observed in the 8 M sample compared with the 11 M sample due to soft-strain behavior. Furthermore, a higher microcrack formation resulted in a higher potential for swell mass and volume change.
The soil freezing-thawing characteristic curve (FTCC) can reflect the physical and mechanical properties of soil-water system during freezing-thawing (FT) process, which is of guiding significance to the study of soil moisture, heat and matter transport in cold regions. In this study, firstly, according to the evolution law of freezing-thawing hysteresis with freezing-thawing process, revealing the hysteresis mechanisms at different stages based on ice-water transformation theory. The freezing-thawing hysteresis can be divided into four stages as temperature decreasing. The hysteresis of the first three stages are due to nucleation and electrolyte effects, capillarity and pore clogging effects, structural damage effect, respectively; and the last stage is extremely weak and can be ignored. Secondly, evaluating freezing-thawing curves of soil-water system with three pore structures (cylindrical, spherical, and sphere-cylinder binary pore) based on the thermodynamic theory, quantitatively. The upper and lower boundaries of the freezing/thawing characteristic curve with natural pores are those with idealized cylindrical and spherical pores, respectively. Finally, the evaluation index (i.e., hysteresis degree) was introduced to quantitatively describe the variation of unfrozen water hysteresis degree with freezing-thawing process. The relationship between the unfrozen water hysteresis degree and temperature can be divided into four stages. The maximum hysteresis degree was found in the second stage, indicating that hysteresis was most significant in the second stage, followed by the first, third, and fourth stages. Our results provide theoretical support for studying hydrothermal characteristics and water, heat, and solute transport of geotechnical materials in seasonally frozen regions.
This paper presents a study on the stabilization of hazardous tin mine tailings (TMT) using a metakaolin-based geopolymer binder for their potential reuse as geomaterials in geotechnical works. The extensive laboratory testing evaluated the mechanical properties, such as unconfined compressive strength, and the durability properties, including mass loss during freezing-thawing and wetting-drying cycles. Environmental assessment included the analysis of leached heavy metal concentration using Toxicity Characteristic Leaching Procedure (TCLP). Additionally, Scanning Electron Microscopy (SEM) was conducted to investigate the microstructure of the stabilized TMT. Satisfactory results show that improvements in mechanical and durability properties depend on variations in metakaolin content, NaOH molarity, and compaction density. The novel porosity/binder index (eta/Biv) has proven to be effective in predicting the behavior of mixtures. Additionally, it demonstrated that freezing-thawing cycles have a more adverse impact on the durability of the examined mixtures. Laboratory results for mechanical strength, durability, and immobilization of hazardous heavy metals demonstrate the potential performance of TMTs for safe reuse in geotechnical works, specifically as a geomaterial for subbase and base layers of pavement exposure to severe environment and climate of the Andean highlands.