共检索到 7

Permafrost regions are under particular pressure from climate change resulting in wide-spread landscape changes, which impact also freshwater chemistry. We investigated a snapshot of hydrochemistry in various freshwater environments in the lower Kolyma river basin (North-East Siberia, continuous permafrost zone) to explore the mobility of metals, metalloids and non-metals resulting from permafrost thaw. Particular attention was focused on heavy metals as contaminants potentially released from the secondary source in the permafrozen Yedoma complex. Permafrost creeks represented the Mg-Ca-Na-HCO3-Cl-SO4 ionic water type (with mineralisation in the range 600-800 mg L-1), while permafrost ice and thermokarst lake waters were the HCO3-Ca-Mg type. Multiple heavy metals (As, Cu, Co, Mn and Ni) showed much higher dissolved phase concentrations in permafrost creeks and ice than in Kolyma and its tributaries, and only in the permafrost samples and one Kolyma tributary we have detected dissolved Ti. In thermokarst lakes, several metal and metalloid dissolved concentrations increased with water depth (Fe, Mn, Ni and Zn - in both lakes; Al, Cu, K, Sb, Sr and Pb in either lake), reaching 1370 mu g L-1 Cu, 4610 mu g L-1 Mn, and 687 mu g L-1 Zn in the bottom water layers. Permafrost-related waters were also enriched in dissolved phosphorus (up to 512 mu g L-1 in Yedoma-fed creeks). The impact of permafrost thaw on river and lake water chemistry is a complex problem which needs to be considered both in the context of legacy permafrost shrinkage and the interference of the deepening active layer with newly deposited anthropogenic contaminants.

期刊论文 2023-11-01 DOI: 10.1002/ldr.4866 ISSN: 1085-3278

Studies of microplastics (MPs) in remote, trans-boundary and alpine rivers are currently lacking. To understand the sinks and transport mechanisms of MPs, this study investigated the distributions and sources of MPs in the surface waters and sediments of five tributaries of the Koshi River (KR), a typical alpine river in the Himalayas between China and Nepal. Mean abundances of MPs in water and sediment were 202 +/- 100 items/m3 and 58 +/- 27 items/kg, dry weight, respectively. The upstream tributary, Pum Qu in China, had the smallest abundance of MPs, while the middle tributary, Sun Koshi in Nepal, had the greatest abundance. Compared to international values in rivers, contamination of the KR with MPs was low to moderate. Fibers represented 98% of all MP particles observed, which consisted of polyethylene, polyethyleneterephthalate, polyamide, polypropylene, and polystyrene. Blue and black MPs were prevalent, and small MPs (<1 mm) accounted for approximately 60% of all MPs. Atmospheric transmission and deposition were considered to be the principal sources of MPs in the upstream tributary. The results imply that point sources associated with mostly untreated sewage effluents and solid wastes from households, major settlements, towns, and cities were most important sources of MPs in the KR. Non-point sources from agricultural runoff and atmospheric transport and deposition in the middle stream tributaries also contribute a part of microplastics, while the least amount was from fishing in the downstream tributary. Urbanization, agriculture, traffic, and tourism contributed to pollution in the KR by MPs. Equations to predict abundances of MPs based on river altitudes revealed that different trends were affected by both natural and human factors within the KR basin. This study presents new insights into the magnitude of MP pollution of a remote alpine river and provides valuable data for developing MP monitoring and mitigation strategies in similar environments worldwide.

期刊论文 2023-06-01 DOI: http://dx.doi.org/10.1016/j.envpol.2021.118121 ISSN: 0269-7491

Manifestations of climate change in the Arctic are numerous and include hydrological cycle intensification and permafrost thaw, both expected as a result of atmospheric and surface warming. Across the terrestrial Arctic dissolved organic carbon (DOC) entrained in arctic rivers may be providing a carbon subsidy to coastal food webs. Yet, data from field sampling is too often of limited duration to confidently ascertain impacts of climate change on freshwater and DOC flows to coastal waters. This study applies numerical modeling to investigate trends in freshwater and DOC exports from land to Elson Lagoon in Northwest Alaska over the period 1981-2020. While the modeling approach has limitations, the results point to significant increases in freshwater and DOC exports to the lagoon over the past four decades. The model simulation reveals significant increases in surface, subsurface (suprapermafrost), and total freshwater exports. Significant increases are also noted in surface and subsurface DOC production and export, influenced by warming soils and associated active-layer thickening. The largest changes in subsurface components are noted in September, which has experienced a similar to 50% increase in DOC export emanating from suprapermafrost flow. Direct coastal suprapermafrost freshwater and DOC exports in late summer more than doubled between the first and last five years of the simulation period, with a large anomaly in September 2019 representing a more than fourfold increase over September direct coastal export during the early 1980s. These trends highlight the need for dedicated measurement programs that will enable improved understanding of climate change impacts on coastal zone processes in this data sparse region of Northwest Alaska.

期刊论文 2021-10-01 DOI: 10.1088/1748-9326/ac2288 ISSN: 1748-9326

Permafrost thaw induced by climate change will cause increased release of nutrients and organic matter from the active layer to Arctic streams and, with increased water temperature, will potentially enhance algal biomass and nutrient uptake. Although essential for accurately predicting the response of Arctic streams to environmental change, knowledge of nutrient release on current Arctic in-stream processing is limited. Addressing this research gap, we quantified nutrient uptake of short-term releases of NO3-, PO43- and NH4+ during peak snowmelt season in five streams of contrasting physiochemical characteristics (from unstable, highly turbid to highly stable, clear-water systems) in north-east Greenland to elucidate the major controls driving nutrient dynamics. Releases were plus or minus acetate to evaluate uptake dynamics with and without a dissolved organic carbon source. To substantiate limiting nutrients to algal biomass, nutrient-diffusing substrates were installed in the five streams for 16days with NH4+, PO43- or NH4+ + PO43- on organic and inorganic substrates. Observed low uptake rates were due to a combination of low nutrient and DOC concentrations, combined with low water temperature and primary producer biomass, and substantial variation occurred between streams. N was found to be the primary limiting nutrient for biofilm, whilst streams displayed widespread PO43- limitation. This research has important implications for future changes in nutrient processing and export in Arctic streams, which are predicted to include increased nutrient uptake rates due to increased nutrient availability, warmer water temperatures and increased concentration of labile carbon. These changes could have ecosystem and landscape-wide impacts.

期刊论文 2018-03-19 DOI: 10.1080/17518369.2018.1440107 ISSN: 0800-0395

Methane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands, marine and freshwater systems, permafrost, and methane hydrates, through shifts in temperature, hydrology, vegetation, landscape disturbance, and sea level rise. Increased CH4 emissions from these systems would in turn induce further climate change, resulting in a positive climate feedback. Here we synthesize biological, geochemical, and physically focused CH4 climate feedback literature, bringing together the key findings of these disciplines. We discuss environment-specific feedback processes, including the microbial, physical, and geochemical interlinkages and the timescales on which they operate, and present the current state of knowledge of CH4 climate feedbacks in the immediate and distant future. The important linkages between microbial activity and climate warming are discussed with the aim to better constrain the sensitivity of the CH4 cycle to future climate predictions. We determine that wetlands will form the majority of the CH4 climate feedback up to 2100. Beyond this timescale, CH4 emissions from marine and freshwater systems and permafrost environments could become more important. Significant CH4 emissions to the atmosphere from the dissociation of methane hydrates are not expected in the near future. Our key findings highlight the importance of quantifying whether CH4 consumption can counterbalance CH4 production under future climate scenarios. Plain Language Summary Methane is a powerful greenhouse gas, second only to carbon dioxide in its importance to climate change. Methane production in natural environments is controlled by factors that are themselves influenced by climate. Increased methane production can warm the Earth, which can in turn cause methane to be produced at a faster rate - this is called a positive climate feedback. Here we describe the most important natural environments for methane production that have the potential to produce a positive climate feedback. We discuss how these feedbacks may develop in the coming centuries under predicted climate warming using a cross-disciplinary approach. We emphasize the importance of considering methane dynamics at all scales, especially its production and consumption and the role microorganisms play in both these processes, to our understanding of current and future global methane emissions. Marrying large-scale geophysical studies with site-scale biogeochemical and microbial studies will be key to this.

期刊论文 2018-03-01 DOI: 10.1002/2017RG000559 ISSN: 8755-1209

Climate change poses a substantial threat to the stability of the Arctic terrestrial carbon (C) pool as warmer air temperatures thaw permafrost and deepen the seasonally-thawed active layer of soils and sediments. Enhanced water flow through this layer may accelerate the transport of C and major cations and anions to streams and lakes. These act as important conduits and reactors for dissolved C within the terrestrial C cycle. It is important for studies to consider these processes in small headwater catchments, which have been identified as hotspots of rapid mineralisation of C sourced from ancient permafrost thaw. In order to better understand the role of inland waters in terrestrial C cycling we characterised the biogeochemistry of the freshwater systems in a c. 14 km(2) study area in the western Canadian Arctic. Sampling took place during the snow-free seasons of 2013 and 2014 for major inorganic solutes, dissolved organic and inorganic C (DOC and DIC, respectively), carbon dioxide (CO2) and methane (CH4) concentrations from three water type groups: lakes, polygonal pools and streams. These groups displayed differing biogeochemical signatures, indicative of contrasting biogeochemical controls. However, none of the groups showed strong signals of enhanced permafrost thaw during the study seasons. The mean annual air temperature in the region has increased by more than 2.5 A degrees C since 1970, and continued warming will likely affect the aquatic biogeochemistry. This study provides important baseline data for comparison with future studies in a warming Arctic.

期刊论文 2016-11-01 DOI: 10.1007/s10533-016-0252-2 ISSN: 0168-2563

Alaska's North Slope is especially vulnerable to climatic change because higher latitudes are subject to positive snow- and sea ice-atmosphere feedbacks under warming conditions and because the dynamics of frozen seascapes and landscapes are tightly determined by thermal regime. Shifts in timing and magnitude of freeze-thaw processes are observed to have or expected to have non-linear, threshold-crossing impacts on sea ice, landforms, and biota. Observed changes in North Slope surface air temperatures and precipitation were non-monotonic over the last century, but have trended upward for the last several decades. These changes are linked to hemispheric climate dynamics, reflected in North Pacific and Arctic Oscillation circulation indices. Projected anthropogenic climate changes-with the possibility of continued warming, increased storm frequency and intensity, and decreased insulating snow cover-portend an uncertain future for this domain. Current or foreseen physical system shifts include: (1) declining seasonal and permanent sea ice extent and character, (2) rapid coastal erosion due to storm exposure over a longer near-shore ice-free season, (3) deeper soil active layer over warmer permafrost, along with altered thermokarst processes-contributing to thaw lake expansion, surface drainage re-organization, and hillslope instability. Biogeophysical responses encompass (1) modified surface-atmosphere energy balance from snow cover, vegetation, and hydrologic change and (2) shifted soil and wetland biogeochemical dynamics, including accelerated carbon efflux. Climate-driven plant community shifts on the North Slope result from the interplay of climate, vegetation response, and landscape processes. Some transitions involve stabilizing, others destabilizing plant-permafrost feedbacks. Impacts on caribou, migratory avifauna, and freshwater biota are through direct effects of climate on organism physiology and reproductive biology and indirectly through disruption of habitat mosaics (including along migratory routes) and shifts in competition and trophic linkages. The North Slope's physical and biological vulnerabilities to shifting climate and observed leading indicators of change are compelling reasons for land managers to consider climatic instability as a threat in conjunction with other known stressors while seeking strategies for protection of this domain's natural heritage and ecosystem services.

期刊论文 2011-03-01 DOI: 10.1007/s10113-010-0180-y ISSN: 1436-3798
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页