Background and AimsMicroorganisms are essential for carbon and nitrogen cycling in the active layer of permafrost regions, but the distribution and controlling factors of microbial functional genes across different land cover types and soil depths remain poorly understood. This gap hinders accurate predictions of carbon and nitrogen cycling dynamics under climate change. This study aims to explore how land cover type and soil depth influence microbial functional gene distribution in the Qinghai-Tibet Plateau's permafrost regions.MethodsSoil samples (0-50 cm) were collected from alpine wet meadows, alpine meadows, and alpine steppes. We analyzed the samples for physicochemical properties, microbial amplicon sequencing, and metagenomic sequencing. Correlation analyses were conducted between microbial community structure, functional genes, and environmental factors to identify the drivers of microbial carbon and nitrogen cycling.ResultsBacterial richness was 6.03% lower in steppe soils compared to wet meadow soils. Steppe soils exhibited the highest aerobic respiration potential, while deeper wet meadow soils had enhanced anaerobic carbon fixation potential and a higher abundance of carbon decomposition-related genes. Nitrogen assimilation was highest in steppe surface soils, whereas denitrification and ammonification were greatest in wet meadow soils. Carbon cycling potential was influenced by total soil carbon, nitrogen, phosphorus, and belowground biomass, while nitrogen cycling was driven by belowground biomass, soil moisture, and pH.ConclusionOur findings underscore the role of environmental factors in microbial functional gene distribution, providing new insights for modeling carbon and nitrogen cycling in alpine permafrost ecosystems under climate change.
Iron (Fe) minerals possess a huge specific surface area and high adsorption affinity, usually considered as rust tanks of organic carbon (OC), playing an important role in global carbon storage. Microorganisms can change the chemical form of Fe by producing Fe-chelating agents such as side chains and form a stable complex with Fe(III), which makes it easier for microorganisms to use. However, in seasonal frozen soil thawing, the succession of soil Fe-cycling microbial communities and their coupling relationship with Fe oxides and Fe-bound organic carbon (Fe-OC) remains unclear. We characterized changes in the Fe phase, Fe-OC, Fe-oxidizing bacteria (FeOB), and Fe-reducing bacteria (FeRB) in the subsoil and analyzed the microbial mechanism underlying Fe-OC changes in alpine grassland by constructing a composite structural equation model (SEM). We found that the Fe(III) content consistently exceeded that of Fe(II). Among the three types of Fe oxides, organically complex Fe (Fe-p) decreased from 2.54 to 2.30 gkg(-1), whereas the opposite trend was observed for poorly crystalline Fe (Fe-o). The Fe-OC content also decreased (from 10.31 to 9.47 gkg(-1); p < 0.05). Fe-cycling microorganisms were markedly affected by the thawing of frozen soil (except FeRB). Fe-p and Feo directly affected changes in Fe-OC. Soil moisture (SM) and FeOB were significant indirect factors affecting Fe-OC changes. Freeze-thaw changes in the subsoil of alpine grassland in Central Asia significantly affected FeOB and Fe oxides, thus affecting the Fe-OC content. To the best of our knowledge, this was the first study to examine the influence of Fe-cycling microorganisms on the Fe phase and Fe-OC in the soil of alpine grassland in Central Asia. Overall, our findings provide scientific clues for exploring the biogeochemical cycle process in future climate change.
Heavy metal pollution can have adverse impacts on microorganisms, plants and even human health. To date, the impact of heavy metals on bacteria in farmland has yielded poor attention, and there is a paucity of knowledge on the impact of land type on bacteria in mining area with heavy metal pollution. Around a metal-contaminated mining area, two soil depths in three types of farmlands were selected to explore the composition and function of bacteria and their correlations with the types and contents of heavy metals. The compositions and functions of bacterial communities at the three different agricultural sites were disparate to a certain extent. Some metabolic functions of bacterial community in the paddy field were up-regulated compared with those at other site. These results observed around mining area were different from those previously reported in conventional farmlands. In addition, bacterial community composition in the top soils was relatively complex, while in the deep soils it became more unitary and extracellular functional genes got enriched. Meanwhile, heavy metal pollution may stimulate the enrichment of certain bacteria to protect plants from damage. This finding may aid in understanding the indirect effect of metal contamination on plants and thus putting forward feasible strategies for the remediation of metal-contaminated sites. Main findings of the work: This was the first study to comprehensively explore the influence of heavy metal pollution on the soil bacterial communities and metabolic potentials in different agricultural land types and soil depths around a mining area.
Nitrous oxide (N2O) is the third most important greenhouse gas, and can damage the atmospheric ozone layer, with associated threats to terrestrial ecosystems. However, to date it is unclear how extreme precipitation and nitrogen (N) input will affect N2O emissions in temperate desert steppe ecosystems. Therefore, we conducted an in -situ in a temperate desert steppe in the northwest of Inner Mongolia, China between 2018 and 2021, in which N inputs were combined with natural extreme precipitation events, with the aim of better understanding the mechanism of any interactive effects on N2O emission. The study result showed that N2O emission in this desert steppe was relatively small and did not show significant seasonal change. The annual N2O emission increased in a non-linear trend with increasing N input, with a much greater effect of N input in a wet year (2019) than in a dry year (2021). This was mainly due to the fact that the boost effect of high N input (on June 17th 2019) on N2O emission was greatly amplified by nearly 17-46 times by an extreme precipitation event on June 24th 2019. In contrast, this greatly promoting effect of high N input on N2O emission was not observed on September 26th 2019 by a similar extreme precipitation event. Further analysis showed that soil NH4+-N content and the abundance of ammonia oxidizing bacteria (amoA (AOB)) were the most critical factors affecting N2O emission. Soil moisture played an important indirect role in regulating N2O emission, mainly by influencing the abundance of amoA (AOB) and de-nitrification functional microorganisms (nosZ gene). In conclusion, the effect of extreme precipitation events on N2O emission was greatly increased by high N input. Furthermore, in this desert steppe, annual N2O flux is co-managed through soil nitrification substrate concentration (NH4+-N), the abundance of soil N transformation functional microorganisms and soil moisture. Overall, it was worth noting that an increase in extreme precipitation coupled with increasing N input may significantly increase future N2O emissions from desert steppes.