Dollar spot, caused by Clarireedia jacksonii, is a chronic fungal disease of creeping bentgrass in cool, humid environments in the United States. In closely mown golf playing surfaces, symptoms include small, circular, sunken spots of blighted turf that eventually coalesce if left untreated. This report evaluates the efficacy of preventative fungicide programs to suppress dollar spot in golf greens. Programs contained broad spectrum fungicides mixed with Appear II, a systemic potassium phosphite fungicide that is formulated with a green pigment. A study was conducted on an 'L-93' plus 'Providence' creeping bentgrass (Agrostis stolonifera) push-up constructed nursery green originally seeded in 2000 at the North Shore Country Club in Glenview, IL. Results indicated fungicide programs that contained Appear II can provide complete control of dollar spot and can also significantly reduce localized dry spot, an abiotic disorder of turfgrass caused by hydrophobic soils, which commonly occurs in sand-based putting greens.
Metal-based nanoparticles (MNPs) are gaining attention as promising components of nanopesticides, offering innovative solutions to enhance agricultural pest management while addressing environmental concerns associated with traditional pesticides. MNPs, such as silver, copper, zinc, nickel, gold, iron, aluminum, and titanium, exhibit unique nanoscale properties. These properties enable the formulation of MNPs for controlled and sustained release, thereby reducing application frequency and minimizing environmental runoff. This controlled release mechanism not only improves pest management efficacy but also reduces risks to non-target organisms and beneficial species, aligning with the principles of sustainable crop protection. This review examines nanopesticides based on their specific targets, such as nanoinsecticide, nanobactericide, nanofungicide, nanonematicide, and nanoviricide. It also explores the mechanisms of action of metal-based nanoparticles, including physical disruption, chemical interactions, and biological processes. Additionally, the review details how MNPs compromise cellular integrity through mechanisms such as membrane damage, DNA disruption, mitochondrial impairment, and protein denaturation. Despite these advantages, significant challenges remain, particularly concerning the environmental impact of MNPs, their long-term effects on soil health and ecosystem dynamics, and potential risks to human safety. Addressing these challenges is crucial for realizing the full potential of MNPs in sustainable agriculture.
Background: The chickpea, scientifically known as Cicerarietinum L., is a significant legume crop that serves as a valuable source of vegetable protein. The chickpea crop is susceptible to various pests and illnesses. Collar rot, induced by the fungal pathogen Sclerotium rolfsii, is a highly significant and extremely damaging disease that affects chickpea crops. The disease causes seedling mortality ranging from 54.7 to 95 per cent and field conditions result in yield decrease ranging from 22 to 50 per cent. The present study aimed to investigate the effectiveness of using a combination of fungicides, bio-agents and organic amendments for the management of collar rot in chickpea. Methods: The investigations were conducted in the Rabi seasons of 2019-20 and 2020-21. The experiments involved the integration of fungicides, fungal biocontrol agents (Trichoderma spp.), FYM and vermicompost to control Collar rot disease in Chickpea caused by S. rolfsii. Six indigenous fungal antagonists (Trichoderma spp.) were assessed in a laboratory setting against S. rolfsii using both dual culture and non-volatile (culture filtrate) methods. The efficacy of the fungicides was assessed using the poison food technique. Nine fungicides were assessed in a laboratory setting to determine their effectiveness against a pathogen and Trichoderma harzianum-2. The fungicides were tested at four different concentrations: 50, 100, 500 and 1000 ppm. The goal was to identify fungicides that are extremely toxic to S. rolfsii at lower concentrations, while being less harmful to the bioagent Trichoderma spp. Pot culture studies were conducted using a completely randomised design (CRD), while field experiments were conducted using a randomised block design (RBD). Result: Trichoderma harzianum-2 (TH-2) was found to be highly efficient against the pathogen. It reduced the growth of the pathogen by 75.18% in the dual culture technique and by 61.85% in the culture filtrate approach. Among the nine fungicides tested, four of them, specifically propineb, mancozeb, captan 70% + hexaconazole 5% WP and penflufen 13.28% w/w + trifloxystrobin, showed lower inhibitory effects on Trichoderma harzianum at doses ranging from 50to 1000 ppm. The treatment that resulted in the highest seed germination rate (100%) and the lowest occurrence of collar rot was the one where the seeds were treated with captan 70% + hexaconazole 5% WP and the soil was supplemented with Trichoderma harzianum through vermicompost application.
This study investigated the sub-lethal effects of four commercial fungicides-two foliar (Amistar (R) Xtra and Mirador (R)) and two ear fungicides (Prosaro (R) and Icarus (R))-applied alone and in combination to wheat crops on caged earthworms (Eisenia fetida). We measured biomarkers that included detoxification responses (glutathione S-transferase, GST), oxidative stress levels (lipid peroxidation, LPO, and catalase, CAT), DNA damage (comet assay), energy reserves (lactate dehydrogenase, LDH), and immune response (lysozyme activity, LYS). The absence of significant differences in catalase and lipid peroxidation levels suggested no oxidative stress due to fungicide exposure. However, the foliar fungicide Amistar (R) Xtra induced the highest GST activity and DNA fragmentation, suggesting synergistic effects between its active ingredients and undisclosed co-formulants. Similar effects observed with the Amistar (R) Xtra-Prosaro (R) mixture confirmed the greater toxicity of Amistar (R) Xtra. This study provides novel insights into the sub-lethal effects of single and combined commercial fungicides on a standard toxicity test organism, shedding light on the ecological implications of fungicide use in agroecosystems and reinforcing the need for pesticide reduction.
Ipconazole (IPC) is a chiral triazole fungicide and commonly used for disease control in seeds. This study investigated the bioactivity and potential mechanism of ipconazole against pathogenic microorganisms at the chiral perspective. It explored the accumulation behavior of ipconazole enantiomers within the soil-earthworm system and evaluated its toxic effects on earthworms. Bioactivity evaluation revealed that the bioactivity order of ipconazole against three plant pathogens is (-)-1S,2 R,5S-IPC > rac-IPC > (+)-1R,2S,5R-IPC, and the bioactivity of (-)-1S,2 R,5S-IPC is 34.6-129.5 times higher than that of (+)-1R,2S,5R-IPC. Molecular docking found that (-)-1S,2 R,5S-IPC has a stronger binding affinity for the target protein CYP51 to cause activity differences. Accumulation and metabolism studies revealed that (-)-1S,2 R,5S-IPC is more persistent than that of (+)-1R,2S,5R-IPC, and ipconazole was primarily metabolized into hydroxylated ipconazole through hydroxylation in the soil-earthworm system. Toxicological evaluation found growth inhibitory effects and histopathological damage to earthworms at an exposure concentration of 1.5 mg kg(-1) ipconazole. Further investigation indicated that these toxic effects of ipconazole were caused by inducing oxidative damage and influencing the functional gene expression of related growth. These research findings will further enhance the understanding of the activity and risks of ipconazole enantiomers, contributing to the safer use of ipconazole in the agricultural environment.
Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood. To address this, a short-term indoor experiment and a long-term outdoor pot experiment were conducted to evaluate the potential of SA to alleviate DFZ-induced phytotoxicity and its effects on DFZ uptake, translocation, metabolism, and accumulation. The underlying mechanisms were explored through physiological, biochemical, and gene expression analyses. The results showed that DFZ induced oxidative damage and reduced photosynthesis by 15.6% in wheat. SA upregulated the expression of genes encoding antioxidant enzymes (POD, CAT, SOD1, and SOD2) in the roots and leaves of DFZ-exposed plants, leading to a 7.5%-13.4% increase in antioxidant enzyme activities and a subsequent 9.7%-14.5% decrease in reactive oxygen species levels. Additionally, SA increased the total chlorophyll content by 16.3%, which was enhanced by regulating chlorophyll synthesis and degradation-related genes, thereby improving the net photosynthetic rate by 12.2%. Furthermore, SA upregulated the expression of lignin biosynthesis-related, CYP450, and GST genes, which reduced DFZ uptake and accelerated its degradation. Consequently, the wheat grain DFZ content decreased by 36.2%, thus reducing the health risk index. This study confirms the potential of SA to reduce DFZ phytotoxicity and accumulation. Based on these findings, we recommend using SA in DFZcontaminated areas to mitigate phytotoxicity and the associated human dietary exposure risks.
Fluxapyroxad, an emerging succinate dehydrogenase inhibitor fungicide, is widely used due to its excellent properties. Given its persistence in soil with a 50 % disappearance time of 183-1000 days, it is crucial to evaluate the long-term effects of low-dose fluxapyroxad on non-target soil organisms such as earthworms ( Eisenia fetida). The present study investigated the impacts of fluxapyroxad (0.01, 0.1, and 1 mg kg(-1 )) on Eisenia fetida over 56 days, focusing on oxidative stress, digestive and nervous system functions, and histopathological changes. We also explored the mechanisms of fluxapyroxad-enzyme interactions through molecular docking and dynamics simulations. Results demonstrated a significant dose-response relationship in the integrated biomarker response of 12 biochemical indices. Fluxapyroxad altered expression levels of functional genes and induced histopatho- logical damage in earthworm epidermis and intestines. Molecular simulations revealed that fluxapyroxad is directly bound to active sites of critical enzymes, potentially disrupting their structure and function. Even at low doses, long-term fluxapyroxad exposure significantly impacted earthworm physiology, with effects becoming more pronounced over time. Our findings provide crucial insights into the chronic toxicity of fluxapyroxad and emphasize the importance of long-term, low-dose studies in pesticide risk assessment in soil. This research offers valuable guidance for the responsible management and application of fungicides.
Naphthalene is a fungicide that can also be a phase-change agent owing to its high crystallization enthalpy at about 80 degrees C. The relatively rapid evaporation of naphthalene as a fungicide and its shape instability after melting are problems solved in this work by its placement into a cured epoxy matrix. The work's research materials included diglycidyl ether of bisphenol A as an epoxy resin, 4,4 '-diaminodiphenyl sulfone as its hardener, and naphthalene as a phase-change agent or a fungicide. Their miscibility was investigated by laser interferometry, the rheological properties of their blends before and during the curing by rotational rheometry, the thermophysical features of the curing process and the resulting phase-change materials by differential scanning calorimetry, and the blends' morphologies by transmission optical and scanning electron microscopies. Naphthalene and epoxy resin were miscible when heated above 80 degrees C. This fact allowed obtaining highly concentrated mixtures containing up to 60% naphthalene by high-temperature homogeneous curing with 4,4 '-diaminodiphenyl sulfone. The initial solubility of naphthalene was only 19% in uncured epoxy resin but increased strongly upon heating, reducing the viscosity of the reaction mixture, delaying its gelation, and slowing cross-linking. At 20-40% mass fraction of naphthalene, it almost entirely retained its dissolved state after cross-linking as a metastable solution, causing plasticization of the cured epoxy polymer and lowering its glass transition temperature. At 60% naphthalene, about half dissolved within the cured polymer, while the other half formed coarse particles capable of crystallization and thermal energy storage. In summary, the resulting phase-change material stored 42.6 J/g of thermal energy within 62-90 degrees C and had a glass transition temperature of 46.4 degrees C at a maximum naphthalene mass fraction of 60% within the epoxy matrix.
Seed coating with fungicides is a common practice in controlling seed-borne diseases, but conventional methods often result in high toxicity to plants and soil. In this study, a nanoparticle formulation was successfully developed using the metal-organic framework UiO-66 as a carrier of the fungicide ipconazole (IPC), with a tannic acid (TA)-ZnII coating serving as a protective layer. The IPC@UiO-66-TA-ZnII nanoparticles provided a controlled release, triggered and regulated by environmental factors such as pH and temperature. This formulation efficiently controlled the proliferation of Fusarium fujikuroi spores, with high penetration into both rice roots and fungal mycelia. The product exhibited high antifungal activity, achieving control efficacy rates of 84.09% to 93.10%, low biotoxicity, and promoted rice growth. Compared to the IPC flowable suspension formula, IPC@UiO-66-TA-ZnII improved the physicochemical properties and enzymatic activities in soil. Importantly, it showed potential for mitigating damage to beneficial soil bacteria. This study provides a promising approach for managing plant diseases using nanoscale fungicides in seed treatment. IPC-loaded UiO-66 with tannic acid-ZnII shells for precision management of rice seedling disease through intelligent, responsive release.A pH- and temperature-sensitive, controlled-release nanoparticle system was developed.Tannic acid-ZnII-modified nanoparticles penetrate into rice roots and fungal mycelium.Nanoparticles provide better control of Fusarium fujikuroi and promote seedling growth.Nanoparticles reduce the pollution of soil environment by conventional seed coatings.
Allium species are known for their culinary, medicinal, and ornamental purposes. Fusarium basal rot is one of the most damaging soilborne fungal diseases of Allium species and poses a significant threat to yield, quality, and storage life worldwide. Various species of Fusarium have been identified as causal agents for Fusarium basal rot, depending on the Allium species involved. Diverse disease management practices have been implemented to mitigate the impact of Fusarium basal rot. This review article provides a comprehensive overview of the recent progress in detecting different species of Fusarium involved in Fusarium basal rot and strategies to control them in affected Allium species involving chemical, biological, and cultural methods. It covers the latest advancements in host plant resistance research from traditional breeding to modern molecular techniques and studying secondary metabolites involved in defense mechanisms against Fusarium basal rot.