Ginger is a significant ethnobotanical and pharmacological crop consisting of potential bioactive constituents responsible for their nutraceutical value, they can have anti-inflammatory, antiobesity, antidiabetic, antinausea, antimicrobial, pain alleviation, antitumor, antioxidant and protective effects on respiratory disease, and agerelated disease. Ginger possesses a substantial value, but its production and general quality are greatly harmed by various biotic and abiotic stressors, to which it is highly susceptible. Fungi are the most damaging disease-causing agents, one of the devastating fungal pathogens in ginger is Fusarium spp., a soil and seed-borne pathogen resulting in poor production, poor quality, and decreased economic returns to the farmers. It infects ginger in every stage of development and each plant part even during post-harvest storage. This review emphasizes a comprehensive understanding of the nutraceutical value of ginger compounds, and Fusarium disease in ginger with its pathogenicity. Moreover, this review elaborates on an improvement of ginger yield by the management of the Fusarium pathogen through the biological and biotechnological approach.
Fusarium wilt, caused by the soil-borne fungal pathogen Fusarium oxysporum (Fo), is widely recognized as one of the most devastating fungal diseases, inflicting significant damage on a wide range of agricultural and horticultural crops. Despite melatonin has recently emerged as a potential enhancer of plant resistance against Fo, the underlying mechanisms remain elusive. In this study, our results demonstrate that exogenous melatonin and MeJA enhance watermelon resistance against Fusarium oxysporum f. sp. Niveum race 2 (FON2) in a dose-dependent manner. The optimal concentration for melatonin and MeJA was determined to be 10 mu M and 1 mu M, respectively. Both melatonin and MeJA inhibited FON2 mycelial growth on PDA medium in a dose-dependent manner. Furthermore, exogenous melatonin significantly stimulated upregulation of MeJA synthesis genes and increased MeJA content upon FON2 infection. However, pretreatment with a MeJA synthesis inhibitor (DIECA) suppressed the induction of melatonin-induced resistance against FON2. Furthermore, MeJA also induced the upregulation of melatonin biosynthetic gene caffeic acid O-methyltransferase 1 (ClCOMT1) and increased melatonin accumulation in response to FON2. Notably, the reduction in FON2 resistance caused by ClCOMT1 deletion was completely restored through exogenous application of MeJA. These results suggest that melatonin facilitates MeJA accumulation, which provides feedback to promote melatonin accumulation, forming a reciprocal positive regulatory loop in response to FON2 infection. Additionally, polyphenol oxidase, phenylalanine ammonia lyase, and lignin are involved in the MeJA-induced resistance against FON2. The growing concern over minimizing pesticide usage and transitioning to sustainable and natural control strategies underscores the significant potential of such a mechanism in combating Fo.
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), poses a significant threat to banana production globally, thereby necessitating effective biocontrol methods to manage this devastating disease. This study investigates the potential of Bacillus siamensis strain JSZ06, isolated from smooth vetch, as a biocontrol agent against Foc TR4. To this end, we conducted a series of in vitro and in vivo experiments to evaluate the antifungal activity of strain JSZ06 and its crude extracts. Additionally, genomic analyses were performed to identify antibiotic synthesis genes, while metabolomic profiling was conducted to characterize bioactive compounds. The results demonstrated that strain JSZ06 exhibited strong inhibitory activity against Foc TR4, significantly reducing mycelial growth and spore germination. Moreover, scanning and transmission electron microscopy revealed substantial ultrastructural damage to Foc TR4 mycelia treated with JSZ06 extracts. Genomic analysis identified several antibiotic synthesis genes, and metabolomic profiling revealed numerous antifungal metabolites. Furthermore, in pot trials, the application of JSZ06 fermentation broth significantly enhanced banana plant growth and reduced disease severity, achieving biocontrol efficiencies of 76.71% and 79.25% for leaves and pseudostems, respectively. In conclusion, Bacillus siamensis JSZ06 is a promising biocontrol agent against Fusarium wilt in bananas, with its dual action of direct antifungal activity and plant growth promotion underscoring its potential for integrated disease management strategies.
Common bean production is constrained by a multitude of biotic constraints including bean flies and Fusarium wilt in tropical and subtropical farming systems globally. As these pests and diseases attack the crop beneath the soil, excessive applications of synthetic pesticides are frequently used for their control. The use of plant-based pesticides could be a more sustainable management approach; however, few studies have investigated their application for controlling soil-borne pests and diseases. This study aimed to evaluate the efficacy of pesticidal plants and soil fertility management for controlling bean fly (Ophiomyia spp.) and Fusarium wilt (Fusarium spp.) using extracts and pastes of Azadirachta indica, Tephrosia vogelii, Tagetes minuta, Lippia javanica, Cymbopogon citratus and Ocimum gratissimum. To protect against Fusarium wilt and bean fly, pesticidal plants were applied as a seed coating and/or foliar spray, and demonstrated that common bean seeds coated with T. vogelii resulted in higher yields than other pesticidal plants and the synthetic pesticide control treatment. Treatments to target bean fly damage showed no significant difference between application methods on the oviposition rate of bean fly. An integrated treatment of T. minuta with 2 g Diammonium phosphate fertilizer and high compost led to higher yields than other treatments. Our results indicate that key soil-borne pests and pathogens of common bean can be effectively managed without synthetic pesticide inputs, while seed ball pastes of pesticidal plants combined with soil fertility management can increase crop yields using cost-beneficial agroecological farming systems.
Watermelon (Citrullus lanatus) has been cultivated for nearly one thousand years and remains a commercially important crop. However, continuous planting often leads to the aggravation of many diseases. Watermelon Fusarium wilt (FW) is one of them, which is a fungal soil-borne disease caused by Fusarium oxysporum f. sp. niveum (Fon) that damages plant roots by invading vascular bundles. Therefore, it is imperative to comprehensively characterize the mechanism mediating disease resistance or susceptibility, as well as identify effective resistance genes, in order to breed improved disease-resistant watermelon varieties. miRNAs are endogenous non-coding RNAs that are widely involved in plant growth, development, metabolism, transport, stress response, and pathogen defense. However, there are few reports of disease-associated miRNAs, or their mechanisms of action, in Cucurbitaceae crops. In this study, the roots of both Fon-susceptible and resistant watermelon varieties were infected with GFP-labeled Fon. Three key infection time points were identified. Illumina sequencing was used to obtain Fon-resistance related miRNAs, and degradome sequencing was used to obtain miRNA target genes. A total of 23 differentially expressed miRNAs were identified at the three key infection time points, the degradation group sequencing found their only target gene. The results of this study provide a theoretical basis for studies of miRNA function and regulation during the interaction between Fon and watermelon plants and clues for the screening of watermelon resistance genes. In addition, this information can be used to breed diseaseresistant watermelon varieties.
This study evaluates cellular damage, metabolite profiling, and defence-related gene expression in tomato plants and soil microflora during Fusarium wilt disease after treatment with B. tequilensis PBE-1. Histochemical analysis showed that PBE-1 was the primary line of defence through lignin deposition and reduced cell damage. GC-MS revealed that PBE-1 treatment ameliorated stress caused by F. oxysporum infection. PBE-1 also improved transpiration, photosynthesis, and stomatal conductance in tomato. qRT-PCR suggested that the defence-related genes FLS2, SERK, NOS, WRKYT, NHO, SAUR, and MYC2, which spread infection, were highly upregulated during F. oxysporum infection, but either downregulated or expressed normally in PBE-1 + P treated plants. This indicates that the plant not only perceives the bio-control agent as a non-pathogen entity but its presence in normal metabolism and gene expression within the host plant is maintained. The study further corroborated findings that application of PBE-1 does not cause ecological disturbances in the rhizosphere. Activity of soil microflora across four treatments, measured by Average Well Colour Development (AWCD), showed continuous increases from weeks 1 to 4 post-pathogen infection, with distinct substrate usage patterns like tannic and fumaric acids impacting microbial energy source utilization and diversity. Principal Component Analysis (PCA) and diversity indices like McIntosh, Shannon, and Simpson further illustrated significant microbial community shifts over the study period. In conclusion, our findings demonstrate that B. tequilensis PBE-1 is an ideal bio-agent for field application during Fusarium wilt disease management in tomato.
In agriculture, soil-borne fungal pathogens, especially Fusarium oxysporum strains, are posing a serious threat to efforts to achieve global food security. In the search for safer agrochemicals, silica nanoparticles (SiO2NPs) have recently been proposed as a new tool to alleviate pathogen damage including Fusarium wilt. Hollow mesoporous silica nanoparticles (HMSNs), a unique class of SiO2NPs, have been widely accepted as desirable carriers for pesticides. However, their roles in enhancing disease resistance in plants and the specific mechanism remain unknown. In this study, three sizes of HMSNs (19, 96, and 406 nm as HMSNs-19, HMSNs-96, and HMSNs-406, respectively) were synthesized and characterized to determine their effects on seed germination, seedling growth, and Fusarium oxysporum f. sp. phaseoli (FOP) suppression. The three HMSNs exhibited no side effects on cowpea seed germination and seedling growth at concentrations ranging from 100 to 1500 mg/L. The inhibitory effects of the three HMSNs on FOP mycelial growth were very weak, showing inhibition ratios of less than 20% even at 2000 mg/L. Foliar application of HMSNs, however, was demonstrated to reduce the FOP severity in cowpea roots in a size- and concentration-dependent manner. The three HMSNs at a low concentration of 100 mg/L, as well as HMSNs-19 at a high concentration of 1000 mg/L, were observed to have little effect on alleviating the disease incidence. HMSNs-406 were most effective at a concentration of 1000 mg/L, showing an up to 40.00% decline in the disease severity with significant growth-promoting effects on cowpea plants. Moreover, foliar application of HMSNs-406 (1000 mg/L) increased the salicylic acid (SA) content in cowpea roots by 4.3-fold, as well as the expression levels of SA marker genes of PR-1 (by 1.97-fold) and PR-5 (by 9.38-fold), and its receptor gene of NPR-1 (by 1.62-fold), as compared with the FOP infected control plants. Meanwhile, another resistance-related gene of PAL was also upregulated by 8.54-fold. Three defense-responsive enzymes of POD, PAL, and PPO were also involved in the HMSNs-enhanced disease resistance in cowpea roots, with varying degrees of reduction in activity. These results provide substantial evidence that HMSNs exert their Fusarium wilt suppression in cowpea plants by activating SA-dependent SAR (systemic acquired resistance) responses rather than directly suppressing FOP growth. Overall, for the first time, our results indicate a new role of HMSNs as a potent resistance inducer to serve as a low-cost, highly efficient, safe and sustainable alternative for plant disease protection.
Currently, soil-borne fungal disease (SBFD) have caused a huge damage in agriculture, and small molecule soil disinfectants have been widely used for the prevention and control of SBFD, which could not only kill the chlamydospore of pathogenic fungi, but also completely destroy the microbial community and its functional diversity in the soil, and is not conducive to subsequent plant planting. Therefore, how to effectively inhibit plant pathogenic fungi while maintaining the general balance of microbial population in the soil to facilitate subsequent plant planting come to be critical problem in the prevention and control of SBFD. In this work, a series of polyacrylamide containing quaternary ammonium salts (PAM-X) were synthesized based on the radical copolymerization of acrylamide (AM) and acrylamide containing different quaternary ammonium salts groups (AMX). Owing to the entanglement between polymer chains and soil, PAM-X could be stably absorbed in the soil, thus effectively delaying the free migration of PAM-X chains in soil, and reducing the probability of being leached from soil, which might be the key to obtain novel polymeric quaternary ammonium salts that have less impact on the environment. Banana Fusarium wilt, also known as banana cancer, caused by Fusarium oxysporum f. sp. cubense (Foc), was chosen as a typical soil-borne pathogen disease to verify the rationality of the above thoughts. The results showed PAM-X had well anti-Foc4 activities in soil, and could maintain the general balance of microbial population in the soil, which are almost non-toxic to earthworms in soil and fish, thus provides a new prevention and control method for SBFD.