Adding fibers into cement to form fiber-reinforced soil cement material can effectively enhance its physical and mechanical properties. In order to investigate the effect of fiber type and dosage on the strength of fiber-reinforced soil cement, polypropylene fibers (PPFs), polyvinyl alcohol fibers (PVAFs), and glass fibers (GFs) were blended according to the mass fraction of the mixture of cement and dry soil (0.5%, 1%, 1.5%, and 2%). Unconfined compressive strength tests, split tensile strength tests, scanning electron microscopy (SEM) tests, and mercury intrusion porosimetry (MIP) pore structure analysis tests were conducted. The results indicated that the unconfined compressive strength of the three types of fiber-reinforced soil cement peaked at a fiber dosage of 0.5%, registering 26.72 MPa, 27.49 MPa, and 27.67 MPa, respectively. The split tensile strength of all three fiber-reinforced soil cement variants reached their maximum at a 1.5% fiber dosage, recording 2.29 MPa, 2.34 MPa, and 2.27 MPa, respectively. The predominant pore sizes in all three fiber-reinforced soil cement specimens ranged from 10 nm to 100 nm. Furthermore, analysis from the perspective of energy evolution revealed that a moderate fiber dosage can minimize energy loss. This paper demonstrates that the unconfined compressive strength test, split tensile strength test, scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) pore structure analysis offer theoretical underpinnings for the utilization of fiber-reinforced soil cement in helical pile core stiffening and broader engineering applications.
Due to recent rainfall extremes and tropical cyclones that form over the Bay of Bengal during the pre- and post-monsoon seasons, the Nagavali and Vamsadhara basins in India experience frequent floods, causing significant loss of human life and damage to agricultural lands and infrastructure. This study provides an integrated hydrologic and hydraulic modeling system that is based on the Soil and Water Assessment Tool model and the 2-Dimensional Hydrological Engineering Centre-River Analysis System, which simulates floods using Global Forecasting System rainfall forecasts with a 48-h lead time. The integrated model was used to simulate the streamflow, flood area extent, and depth for the historical flood events (i.e., 1991-2018) with peak discharges of 1200 m3/s in the Nagavali basin and 1360 m3/s in the Vamsadhara basin. The integrated model predicted flood inundation depths that were in good agreement with observed inundation depths provided by the Central Water Commission. The inundation maps generated by the integrated modeling system with a 48-h lead time for tropical cyclone Titli demonstrated an accuracy of more than 75%. The insights gained from this study will help the public and government agencies make better decisions and deal with floods.