共检索到 2

The transport sector emits a wide variety of gases and aerosols, with distinctly different characteristics which influence climate directly and indirectly via chemical and physical processes. Tools that allow these emissions to be placed on some kind of common scale in terms of their impact on climate have a number of possible uses such as: in agreements and emission trading schemes; when considering potential trade-offs between changes in emissions resulting from technological or operational developments; and/or for comparing the impact of different environmental impacts of transport activities. Many of the non-CO2 emissions from the transport sector are short-lived substances, not currently covered by the Kyoto Protocol. There are formidable difficulties in developing metrics and these are particularly acute for such short-lived species. One difficulty concerns the choice of an appropriate structure for the metric (which may depend on, for example, the design of any climate policy it is intended to serve) and the associated value judgements on the appropriate time periods to consider; these choices affect the perception of the relative importance of short- and long-lived species. A second difficulty is the quantification of input parameters (due to underlying uncertainty in atmospheric processes). In addition, for some transport-related emissions, the values of metrics (unlike the gases included in the Kyoto Protocol) depend on where and when the emissions are introduced into the atmosphere - both the regional distribution and, for aircraft, the distribution as a function of altitude, are important. In this assessment of such metrics, we present Global Warming Potentials (GWPs) as these have traditionally been used in the implementation of climate policy. We also present Global Temperature Change Potentials (GTPs) as an alternative metric, as this, or a similar metric may be more appropriate for use in some circumstances. We use radiative forcings and lifetimes from the literature to derive GWPs and GTPs for the main transport-related emissions, and discuss the uncertainties in these estimates. We find large variations in metric (GWP and GTP) values for NOx, mainly due to the dependence on location of emissions but also because of inter-model differences and differences in experimental design. For aerosols we give only global-mean values due to an inconsistent picture amongst available studies regarding regional dependence. The uncertainty in the presented metric values reflects the current state of understanding; the ranking of the various components with respect to our confidence in the given metric values is also given. While the focus is mostly on metrics for comparing the climate impact of emissions, many of the issues are equally relevant for stratospheric ozone depletion metrics, which are also discussed. (C) 2009 Elsevier Ltd. All rights reserved.

期刊论文 2010-12-01 DOI: 10.1016/j.atmosenv.2009.04.044 ISSN: 1352-2310

There are various difficulties involved with comparing the effects of short-lived and long-lived atmospheric species on climate. Global warming potentials (GWPs) can be computed for pulse emissions of short-lived species. However, if the focus is on the long-term effect of a pulse emission occurring today, GWPs do not factor in the fact that if a radiative forcing is applied for a short period, the climate system has time to relax back to equilibrium. The concept of global temperature change potential (GTP) at a time horizon for an emission pulse has been proposed to circumvent this problem. Here we show how GTPs can be used to compare black carbon (BC) and CO2 emissions and the methodology is illustrated with two concrete examples. In particular we discuss a trade-off situation where a decrease in BC emissions is associated with a fuel penalty and therefore an additional CO2 emission. A parameter--which depends on the BC radiative effects, the BC emission reduction and the additional CO2 emission-is defined and can be compared to a critical parameter to assess whether or not the BC emission reduction wins over the fuel penalty for various time horizons. We show how this concept can be generalised to compare the climate effects of carbon dioxide against a set of short-lived species and to account for differences in climate efficacy. Finally, the need for additional research is discussed in the light of current uncertainties. Crown Copyright (c) 2007 Published by Elsevier Ltd. All rights reserved.

期刊论文 2008-01-01 DOI: 10.1016/j.enpol.2007.08.039 ISSN: 0301-4215
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页