共检索到 7

Buried steel gas pipelines are increasingly facing safety challenges due to the escalating traffic loads and varying burial depths, which could potentially lead to hazards such as leakage, fire, and explosion. This paper investigates stress mechanisms in buried steel gas pipelines subjected to vehicular loading through integrated analytical approaches. Theoretical modeling incorporates three key components: dynamic vehicle load characteristics, soil-pipeline interaction pressures, and stress distribution angles across pipeline cross-sections. Stress variations are systematically quantified under varying soil conditions and load configurations. A finite-element model was developed to simulate pipeline responses, with computational results cross-validated against theoretical predictions to establish stress profiles under multiple operational scenarios. Additionally, this paper employ fatigue accumulation damage and reliability theories, utilizing Fe-Safe software to evaluate pipeline reliability, determining fatigue life and strength coefficients for various loads and burial depths. Based on these analyses, this paper develop risk control measures and protective methods for buried steel gas pipelines, validated through finite-element and fatigue analyses. Overall, this paper offers insights for preventing and controlling risks to buried steel gas pipelines under vehicle loads.

期刊论文 2025-03-07 DOI: 10.1002/qre.3753 ISSN: 0748-8017

Due to the unobservable nature of underground construction and the destructive nature of horizontal directional drilling rigs with high power, this type of construction has become one of the most important causes of failure of long-distance natural gas pipelines. In recent years, horizontal directional drilling construction has caused pipeline accidents frequently. Once the accident occurs, the normal operation of natural gas pipelines cannot be ensured. Therefore, studying the damage mechanism of buried natural gas pipelines under horizontal directional drilling loads is important for the safe operation of pipelines. This paper combines the construction characteristics of horizontal directional drilling and the actual situation of natural gas pipelines to explore the relationship between horizontal directional drilling and pipelines. The force situation of pipelines after contacting directional drilling bits is analyzed by the drill bit-soil-pipe finite element model created in the ABAQUS software. The Johnson-Cook ductile damage model was utilized to determine the pipe's damage condition. The sensitivity analysis results show that he order of the impact of key parameters on the dynamic response of the pipe is bit thrust > wall thickness > bit diameter > pipe diameter > bit speed > number of bit teeth > pipe operating pressure. Therefore, priority should be given to controlling the size of the drilling thrust and the speed of the drill bit to reduce the damage to pipelines by horizontal directional drilling construction. In addition, appropriately reducing the pipeline operating pressure can also reduce the risk of the pipeline being damaged by horizontal directional drilling construction.

期刊论文 2025-01-15 DOI: 10.1142/S0219455425500117 ISSN: 0219-4554

Pipelines are important structural elements that are frequently used today to meet many infrastructures needs such as drainage, natural gas or water transmission. In this context, the usability of such structures, which are important elements of infrastructure systems, especially after disasters such as earthquakes, is of great importance. For this reason, within the scope of this study, a parametric investigation of the seismic behaviors of a natural gas pipeline system under mainshock-aftershock sequences have been carried out, specifically taking into account the soil-natural gas pipeline interaction (SNGPI) in the help of finite element model (FEM) proposed. Before developing the model of SNGPI system proposed using solid element, the fundamental mode frequencies of the pipeline system modeled using the solid element for the verification have been compared with those of obtained from the pipeline system modeled using the beam element and the analytical solutions. After verification of proposed model is demonstrated, SNGPI system has been modeled and its fundamental modes have been compared with mode frequencies of soil stratum obtained from well-known simple analytic solutions. After this stage, the dynamic analyses of natural gas pipeline (NGP) system in the time domain have been carried out using four different soil systems and four different mainshock-aftershock sequences. The results of the nonlinear time-history analyses have been investigated in terms of the stress and the displacement responses. Parametric evaluations show that the greatest displacements and the stresses occurring at the considered nodes of NGP system may be importantly affected from mainshock-aftershock sequences and soil stiffness changes. As the soil stiffness decreases, both the peak stresses and displacements increased significantly. On the other hand, the same responses obtained under mainshock loadings, which have relatively lower peak ground acceleration (PGA)/ peak ground velocity (PGV) ratio compared to aftershock loadings, are generally larger than those obtained under aftershock loadings.

期刊论文 2025-01-01 DOI: 10.1016/j.tust.2024.106231 ISSN: 0886-7798

Relevance. The surfaced of a gas pipeline, ballasted with weights, in a swamp qualifies as > and must be decommissioned. Aim. To establish the effect of the weight of weighting agents on a gas pipeline ascent in a swamp. The weight depends on the concentration of moles soluble in water, changes in the values of the physico-mechanical characteristics of the soil due to its watering, and the parameters of the gas pipeline operation. Objects. Sections of a gas pipeline, ballasted with weights, in a swamp in a watered area. Methods. Modeling the stress-strain state of a gas pipeline, ballasted with weighting agents, in a swamp by a one-dimensional rod system consisting of rods and their coupling nodes; integration by the Godunov orthogonal run method of a normal system of nonlinear ordinary differential equations describing the stress-strain state of the rods and compiling a solution of systems of algebraic equilibrium equations in the coupling nodes, taking into account the impact of weighting agents on stress-strain state. Results. The paper introduces the brief information on the surfacing of gas pipelines with weights installed on them. The authors have set and solved the problem of the stress-strain state of the of the gas pipeline consisting of the middle underwater part, ballasted with reinforced concrete weights, and the extreme flooded underground parts. The analysis of the stress-strain state of the gas pipeline established the following main reasons for its ascent: uneven unequal sedimentation of the base soil on the extreme parts, in which the pipe remains in a trench filled with soil; reducing the weight of weighting agents in water due to an increase in the specific gravity of water due to the growth of concentration of moles dissolved in water. The authors found the critical values of the operating parameters, at which the bulging of the pipe with an upward deflection arrow begins, preceding the ascent of the gas pipeline.

期刊论文 2025-01-01 DOI: 10.18799/24131830/2025/3/4552 ISSN: 2500-1019

Damage to buried gas pipelines caused by mining activities has been frequently reported. Based on a case study from the Central China coal mining area, this research employs a scaled model experiment to investigate the movement of overlying strata in a room-and-pillar mining goaf. Distributed optical fiber strain sensors and thin-film pressure sensors were used to simultaneously measure the stress variations in the pipeline and changes in the soil pressure surrounding it. As the mining recovery rate increased from 50% to 86%, the maximum displacement of the overburden sharply escalated from 33.55 mm to 79.19 mm. During surface subsidence, separation between the pipeline and surrounding soil was observed, leading to the formation of a soil-arching effect. The development of the soil-arching effect increased soil pressure on the top of the pipeline, while soil pressure at the bottom of the pipeline increased on the outer side of the subsidence area and decreased on the inner side. Three critical sections of the pipeline were identified, with the maximum stress reaching 1908.41 kPa. After the completion of mining activities, pipeline collapse occurred, leading to a weakening of the soil-arching effect. Consequently, both stress concentration in the pipeline and soil pressure decreased. The probability integral method was corrected by incorporating the fracture angle, which enabled the determination of the location of maximum surface subsidence curvature, found to be close to the three failure sections of the pipeline.

期刊论文 2025-01-01 DOI: 10.3390/app15020622

Dealing with collapsible soils consistently presents a crucial challenge for geological and geotechnical engineers. Loess soil is among the most widely recognized types of collapsible soils, covering approximately 10 % of the Earth's land surface. Loessic soil is a sedimentary deposit primarily composed of silt-size grains, loosely bound together by calcium carbonate. In Iran, approximately 17 % of Golestan province is covered by silty, clayey, and sandy loesses, primarily composed of loessic soil. Additionally, several energy transmission lines in this province traverse these loess-covered areas. Based on the reports from Golestan Gas Company experts, the scouring of gas pipeline channels in various regions, such as Dashli-Alum in Maraveh-Tappeh city, causes significant risks in the traffic roads and is one of the most critical issues facing this company. This research assessed the dispersion and collapse potentials of loess soil using a range of field exploration and laboratory testing methods. These methods included atomic absorption spectroscopy, the double hydrometer, scanning electron microscope photography, wavelength-dispersive X-ray fluorescence spectrometry, and consolidation tests. The results indicate that soil collapsibility was acquired as one of the components of the scouring phenomenon occurrences. To achieve an optimal solution, the effectiveness of the chemical stabilization method involving cement, bentonite, micro- silica, and synthesized nano-titanium additives was evaluated through an oedometer, Atterberg limits, uniaxial compression, and direct shear tests. Additives dry mixing of cement and nano-titanium were obtained as the optimal stabilization solutions against scouring compared to other additives. However, considering the environmental impacts of cement production and use, nano-titanium presents a more environmentally sustainable option due to CO2 absorption and reduced damage potential to vegetation.

期刊论文 2024-11-01 DOI: 10.1016/j.enggeo.2024.107747 ISSN: 0013-7952

Upon leakage in underground gas pipelines, the interaction between soil particles and gas will produce acoustic events exhibiting varied frequencies, amplitudes, and energy characteristics. In order to obtain the acoustic response of gas pipeline leaks that are buried, experiments were conducted using a two-dimensional visual leak testing facility. Employing time-domain parameter analysis, fast Fourier transform (FFT), and wavelet packet analysis (WPT), this study meticulously investigated the impact of gas pressure and soil moisture on the time-frequency characteristics of the acoustic waves throughout the leakage process. The results show that: (1) the amplitude, dominant frequency, and energy of acoustic waves closely relate to the deformation and disturbance of soil morphology, (2) the amplitude of acoustic waves increases and decreases exponentially with the increase of gas pressure and soil moisture content, respectively, (3) the main frequency response of acoustic waves during the erosion process predominantly lies within the 0 to 1 kHz range, exhibiting an N-shaped cyclical variation, and it tends to decrease with the increase in gas pressure and increase with the rise in soil moisture content, (4) as the leakage process continues, the energy ratio of 0-156.25 Hz increases continuously, the maximum is 45.24%, and the frequency bands of 0-156.25 Hz and 156.25-312.5 Hz demonstrate a strong responsive pattern to variations in soil moisture content and gas pressure, respectively. Therefore, these two can be utilized as the characteristic frequency bands to represent the effects of moisture content and gas pressure, and (5) the leakage acoustic sources primarily originate from pipe wall vibrations, gas impact on soil particles, and friction within the soil particle medium, with the latter two types of vibrations generating more propagative acoustic waves. The research results are of great significance to the prediction of soil structure damage and the acoustic monitoring of gas leakage.

期刊论文 2024-11-01 DOI: 10.1061/JPSEA2.PSENG-1656 ISSN: 1949-1190
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页