Mountains are highly diverse in areal extent, geological and climatic context, ecosystems and human activity. As such, mountain environments worldwide are particularly sensitive to the effects of anthropogenic climate change (global warming) as a result of their unique heat balance properties and the presence of climatically-sensitive snow, ice, permafrost and ecosystems. Consequently, mountain systems-in particular cryospheric ones-are currently undergoing unprecedented changes in the Anthropocene. This study identifies and discusses four of the major properties of mountains upon which anthropogenic climate change can impact, and indeed is already doing so. These properties are: the changing mountain cryosphere of glaciers and permafrost; mountain hazards and risk; mountain ecosystems and their services; and mountain communities and infrastructure. It is notable that changes in these different mountain properties do not follow a predictable trajectory of evolution in response to anthropogenic climate change. This demonstrates that different elements of mountain systems exhibit different sensitivities to forcing. The interconnections between these different properties highlight that mountains should be considered as integrated biophysical systems, of which human activity is part. Interrelationships between these mountain properties are discussed through a model of mountain socio-biophysical systems, which provides a framework for examining climate impacts and vulnerabilities. Managing the risks associated with ongoing climate change in mountains requires an integrated approach to climate change impacts monitoring and management.
Climate change increases the risk of severe alterations to essential wildlife habitats. The Arctic fox (Vulpes lagopus (Linnaeus, 1758)) uses dens as shelters against cold temperatures and predators. These dens, needed for successful reproduction, are generally dug into the active layer on top of permafrost and reused across multiple generations. We assessed the vulnerability of Arctic fox dens to the increasing frequency of geohazards (thaw settlement, mass movements, and thermal erosion) that is arising from climate change. On Bylot Island (Nunavut, Canada) we developed, and calculated from field observations, a qualitative vulnerability index to geohazards for Arctic fox dens. Of the 106 dens studied, 14% were classified as highly vulnerable, whereas 17% and 69% had a moderate and low vulnerability, respectively. Vulnerability was not related to the probability of use for repro- duction. Although climate change will likely impact Arctic fox reproductive dens, such impact is not a major threat to foxes of Bylot Island. Our research provides the first insights into the climate-related geohazards potentially affecting Arctic fox ecology in the next decades. The developed method is flexible and could be applied to other locations or other species that complete their life cycle in permafrost regions.
The subsurface structure of permafrost is of high significance to forecast landscape dynamics and the engineering stability of infrastructure under human impacts and climate warming, which is a modern challenge for Arctic communities. Application of the non-destructive method of geo-penetrating radar (GPR) survey is a promising way to study it. The study program, which could be used for planning and monitoring of measures of adaptation of Arctic communities to environmental changes is provided in this paper. The main principle was to use etalons of coupled radargrams and archive geological data to interpret changes in the permafrost structure from a grid of 5-10 m deep GPR transects. Here, we show the application of GPR to reconstruct and predict hazards of activation of cryogenic processes from the spatial variability in the structure of permafrost. The cumulative effects of the village and climate change on permafrost were manifested in changes in the active layer thickness from 0.5-1.0 m to up to 3.5 m. Despite that the permafrost degradation has declined due to the improved maintenance of infrastructure and the effects of ground filling application, the hazards of heaving and thermokarst remain for the built-up area in Lorino.