Collapse pits are highly susceptible to secondary hazards such as underground debris flows and slope instability under mining disturbances. These hazards significantly damage the ecological environment of the mining area. To reduce the geological hazards of collapse pits, grouting is used for management. The diffusion pattern and curing mode of slurry under different grouting pressures were investigated through indoor grouting simulation tests, and industrial tests were carried out to assess grouting effects. The results indicate that the slurry is dominated by penetration diffusion and supplemented by splitting diffusion in the moraine. The penetration distance and diffusion radius of the slurry increase linearly with grouting pressure, while the splitting uplift distance and cured volume increase exponentially with grouting pressure. Splitting diffusion consists of three stages: bulging compaction, splitting flow, and passive uplift. Horizontal splitting has a vertical uplift effect on the formation. The slurry primarily consolidates individual moraine particles into a cohesive mass by filling fractures, binding soil particles, and reinforcing interfaces with the rock mass. For different moraine layer structures, full-hole, segmented, and point-based grouting methods were applied. A composite grouting technique, layered grouting with ring solidification, was also introduced, achieving excellent grouting results. This study provides technical support for managing geological hazards in collapse pits caused by block caving mining disturbances and for green mining practices.
Mountain tunnels built near faults often suffer from significant permanent deformation and structural dislocation during seismic activity. In this paper, we present a rock-fault-tunnel geological model with a transition area between the hanging wall and the foot wall which allows the free slippery growth inside the area. A time-sequenced load based on design code and fault activity is conducted in this model to simulate dynamic seismic input after fault dislocation. In our case, a reverse fault with a tunnel cross has been created with this method. A 30cm fault dislocation is simulated by putting the displacement boundary of the hanging wall with a compression vector and the seismic wave is input from the bottom boundary as acceleration waveform adjusted to 0.4g. The model simulates the uplift of the hanging wall and the growth of the slip surface, and reveals the extension mechanism of the triangular shear zone of shear rupture of the surrounding rock due to the extrusion of the reverse fault during the propagation of the reverse fault. The seismic wave with a three-way acceleration was input after the dislocation process. The simulation indicates that with the gradual uplift of the hanging wall, the rock body of the fracture zone shows a more significant large deformation flow trend and a more significant horizontal slip flow. Under reverse fault thrust, the width of the shear effect influence zone is around 300m. A decreasing trend of accumulated strain can be found at the interface due to acceleration input. Dislocation-seismic time-sequence loading may underestimate its damage effects.
Large deformations of strata caused by shallow tunnel excavation in urban reclamation areas pose a serious threat to geological safety. In this paper, geo-mechanical model tests and numerical simulations were conducted to investigate the large deformation characteristics based on the Haicang tunnel in Xiamen, China. First, the tunnel excavation process using the double side drift method was simulated to reveal the large deformation characteristics and influencing factors. Then, geo-mechanical model tests were conducted to further investigate the deformation characteristics, stress release patterns and pore water pressure evolution. The results show that groundwater and the thickness of the backfill soil are the primary factors affecting the deformation behavior. Meanwhile, the stress release and pore water pressure dissipation resulting from the core construction procedure are direct causes of large deformation. The research results can serve as a reference for the prevention and control of large deformation in shallow buried tunnel construction.