共检索到 10

Carbon dioxide (CO2) and methane (CH4) emissions from freshwater ecosystems are predicted to increase under climate warming. However, freshwater ecosystems in glacierized regions differ critically from those in non-glacierized regions. The potential emissions of CO2 and CH4 from glacierized environments in the Tibetan Plateau (TP) were only recently recognized. Here, the first direct measurement of CO2 and CH4 emission fluxes and isotopic composition during the spring of 2022 in 13 glacial lakes of the TP revealed that glacial lakes were the previously overlooked CO2 sinks due to chemical weathering in glacierized regions. The daily average CO2 flux was -5.1 & PLUSMN; 4.4 mmol m(-2) d(-1), and the CO2 consumption could reach 38.9 Gg C-CO2 yr(-1) by all glacial lakes in the TP. This consumption might be larger during summer when glaciers experience intensive melting, highlighting the importance of CO2 uptake by glacial lakes on the global carbon cycle. However, the studied glacial lakes were CH4 sources with total emission flux ranging from 4.4 & PLUSMN; 3.3 to 4082.5 & PLUSMN; 795.6 & mu;mol m(-2) d(-1). The large CH4 range was attributed to ebullition found in three of the glacial lakes. Low dissolved organic carbon concentrations and CH4 oxidation might be responsible for the low CH4 diffusive fluxes of glacial lakes without ebullition. In addition, groundwater input could alter CO2 and CH4 emissions from glacial lakes. CH4 in glacial lakes probably had a thermogenic source; whereas CO2 was influenced mainly by atmospheric input, as well as organic matter remineralization and CH4 oxidation. Overall, glacial lakes in the TP play an important role in the global carbon cycle and budget, and more detailed isotopic and microbial studies are needed to constrain the contributions of different pathways to CO2 and CH4 production, consumption and emissions.

期刊论文 2023-04-01 DOI: http://dx.doi.org/10.1088/1748-9326/aceb7b ISSN: 1748-9326

Mt. Everest (Qomolangma or Sagarmatha), the highest mount on Earth and located in the central Himalayas between China and Nepal, is characterized by highly concentrated glaciers and diverse landscapes, and is considered to be one of the most sensitive area to climate change. In this paper, we comprehensively synthesized the climate and environmental changes in the Mt. Everest region, including changes in air temperature, precipitation, glaciers and glacial lakes, atmospheric environment, river and lake water quality, and vegetation phenology. Historical temperature reconstruction from ice cores and tree rings revealed the distinct features of 20th century warming in the Mt. Everest region. Meteorological observations further proved that the Mt. Everest region has been experiencing significant warming (approximately 0.33 degrees C/decade) but relatively stable precipitation during 1961-2018 AD. Projected results (during 2006-2099 AD) under different representative concentration pathway scenarios showed a general warming trend in the region, with larger warming occurring in winter than in summer. Meanwhile, the precipitation projections varied spatially with no significant trends over the region. Intensive glacier shrinkage was characterized by decreasing glacier areas, while glacier-fed river runoff increased. Glacial lakes expanded with increasing glacial lake areas and numbers. These findings indicated a clear regional hydrological response to climate warming. Owing to the remote location of Mt. Everest, the present atmospheric environment remained relatively clean; however, long-range transport of atmospheric pollutants from South Asia and West Asia may have substantially influenced the Mt. Everest region, resulting in increasing concentrations of pollutants since the Industrial Revolution. Anthropogenic activities have been shown to influence river and lake water quality in this remote region, especially in the downstream. The end of the vegetation growing season advanced in the northern slope and did not change in southern slope region of the Mt. Everest, and there was no significant change in start date of the growing season in the region. This review will enhance our understanding of climate and environmental changes in the Mt. Everest region under global warming.

期刊论文 2023-02-26 DOI: http://dx.doi.org/10.1016/j.earscirev.2021.103911 ISSN: 0012-8252

Lake-terminating glaciers are among the most severely retreating glacier types in high mountain areas. However, the characteristic of being covered by glacial lakes after retreat makes it hard to estimate their actual ice loss in recent years, as does the contribution of different parts in ice loss, which leads to significant obstacles not only in evaluating solid water resources but understanding inter-relationships between glacial ice and glacial lakes. This study presents a detailed investigation of Jiongpu Co, one of the biggest glacial lakes in the Tibetan Plateau, including its bathymetry and area evolution. The ice loss in the last two decades was analyzed using a multisource DEM dataset. The main results showed that from 1976 to 2021, Jiongpu Co had expanded from 1.19 +/- 0.09 km2 to 5.34 +/- 0.07 km2. The volume of Jiongpu Co showed a surprising increment from 0.09 +/- 0.004 Gt to 0.66 +/- 0.03 Gt from 1976 to 2021, leading to a subaqueous equivalent ice loss of 0.32 +/- 0.01 Gt water from 2000 to 2020 and resulting in an underestimated ice loss of 0.06 Gt, 19% compared with previous evaluations. The total ice loss of the Jiongpu glacier was 1.52 +/- 0.37 Gt from 2000 to 2020, and more than 1/3 ice loss was related to lake expansion (0.32 +/- 0.01 Gt underwater, 0.19 +/- 0.02 Gt above water). This study makes a further contribution to the understanding of ice loss in the complicated system of lake-terminating glaciers.

期刊论文 2022-07-01 DOI: http://dx.doi.org/10.3390/rs16163027

The Kangri Karpo Mountain Range on the Qinghai-Tibet Plateau frequently experiences glacial lake outburst floods (GLOFs). This study assessed the risk of outburst floods for Guangxieco Proglacial Lake (GPL) in this Mountain Range as a typical case to reveal the effects of rapid glacial change. The area of Gongzo Glacier behind GPL decreased by 7.39 +/- 0.10% from 1987 to 2019, while this glacier advanced by 32.45 m from 5 June to 27 October in 1988. Guangxieco Proglacial Lake decreased from 0.42 +/- 0.03 km(2) in 1987 to 0.19 +/- 0.03 km(2) in 1988 and then continuously expanded to 0.43 +/- 0.04 km(2) in 2019. Heavy precipitation occurred before 15 July 1988, when no supraglacial lake existed. Meanwhile, sustained abnormally high air temperature caused accelerated glacier and snow melting. Since 1988, a larger volume of rainfall and meltwater impounded by the ice wall caused an increase in the basal water pressure in the glacier. A significant increase in winter mass balance has caused a further increase in the downward gravity component of glacier sliding. As a result, the glacier advanced rapidly while reopening previously blocked subglacial drainage systems. The accumulating subglacial water rapidly drained into the Proglacial Lake causing an elevated lake level and a GLOF event. However, the current area of the glacial lake has recovered to the scale present before the outburst in 1988. Therefore, local government agencies and the local community should improve early warning systems and take measures designed to prevent a new GLOF and to minimize the risk of a recurrence of a GPL outburst.

期刊论文 2022-06-01 DOI: http://dx.doi.org/10.1007/s11069-021-05029-5 ISSN: 0921-030X

Glacial lake outburst floods (GLOFs) are a severe hazard in the Himalayas. Glacial lake expansion and the corresponding volume increase play major roles in GLOFs as well as climate change. Furthermore, mass movement and dam conditions play a major role in the GLOF initiation process. Recently, because of global warming, glacial lakes in the central Himalayas have been expanding rapidly. Owing to a lack of systematic assessment and meticulous field surveys, people living downstream are at great risk of GLOFs. Comprehensive investigations and assessment of the relationships among lake expansion, lake dam conditions, and GLOF risk are urgently needed. In this study, we surveyed Jialong Co, a typical end-moraine dammed lake in Poiqu River in the central Himalayas by using Landsat and Sentinel satellite images from the past 32 years, field work, and depth measurements using an unmanned surface vessel on August 28, 2020. The results showed that Jialong Co had experienced slow-quick-slow expansion, increasing in area from 0.13 +/- 0.03 to 0.60 +/- 0.02 km(2). The lake bathymetric map revealed that the lake volume was (3.75 +/- 0.38) x 10(7) m(3) in 2020. Lake expansion occurred in the area from which the mother glacier retreated, indicating a close connection between the lake and its mother glacier and revealing that topography controlled the lake expansion process. Furthermore, thorough field work revealed that outlet dynamics and external water erosion are vulnerable elements in the disaster chain that initiate and affect the GLOF hazard of Jialong Co. Overall, this case study could help scholars understand the expansion mechanism of end-moraine dammed lakes and aid in hazard assessment of glacial lakes in the central Himalayas. (C) 2021 Elsevier B.V. All rights reserved.

期刊论文 2022-02-01 DOI: http://dx.doi.org/10.1016/j.scitotenv.2021.147249 ISSN: 0048-9697

Antibiotic resistance (AR) has been extensively studied in natural habitats and clinical applications. AR is mainly reported with the use and misuse of antibiotics; however, little is known about its presence in antibiotic-free remote supraglacial lake environments. This study evaluated bacterial strains isolated from supraglacial lake debris and meltwater in Dook Pal Glacier, northern Pakistan, for antibiotic-resistant genes (ARGs) and metaltolerant genes (MTGs) using conventional PCR. Several distinct ARGs were reported in the bacterial strains isolated from lake debris (92.5%) and meltwater (100%). In lake debris, 57.5% of isolates harbored the blaTEM gene, whereas 58.3% of isolates in meltwater possessed blaTEM and qnrA each. Among the ARGs, qnrA was dominant in debris isolates (19%), whereas in meltwater isolates, qnrA (15.2%) and blaTEM (15.2%) were dominant. ARGs were widely distributed among the bacterial isolates and different bacteria shared similar types of ARGs. Relatively greater number of ARGs were reported in Gram-negative bacterial strains. In addition, 92.5% of bacterial isolates from lake debris and 83.3% of isolates from meltwater harbored MTGs. Gene copA was dominant in meltwater isolates (50%), whereas czcA was greater in debris bacterial isolates (45%). Among the MTGs, czcA (18.75%) was dominant in debris strains, whereas copA (26.0%) was greater in meltwater isolates. This presents the co-occurrence and co-selection of MTGs and ARGs in a freshly appeared supraglacial lake. The same ARGs and MTGs were present in different bacteria, exhibiting horizontal gene transfer (HGT). Both positive and negative correlations were determined between ARGs and MTGs. The research provides insights into the existence of MTGs and ARGs in bacterial strains isolated from remote supraglacial lake environments, signifying the need for a more detailed study of bacteria harboring ARGs and MTGs in supraglacial lakes.

期刊论文 2022-02-01 DOI: http://dx.doi.org/10.1016/j.envres.2024.118288 ISSN: 0013-9351

The Karakoram mountain range is prone to natural disasters such as glacial surging and glacial lake outburst flood (GLOF) events. In this study, we aimed to document and reconstruct the sequence of events caused by glacial debris flows that dammed the Immit River in the Hindu Kush Karakoram Range on 17 July 2018. We used satellite remote sensing and field data to conduct the analyses. The order of the events in the disaster chain were determined as follows: glacial meltwater from the G2 glacier (ID: G074052E36491N) transported ice and debris that dammed the meltwater at the snout of the G1 glacier (ID: G074103E36480N), then the debris flow dammed the Immit River and caused Lake Badswat to expand. We surveyed the extent of these events using remote sensing imagery. We analyzed the glaciers' responses to this event chain and found that the glacial debris flow induced G1 to exhibit accelerating ice flow in parts of the region from 25 July 2018 to 4 August 2018. According to the records from reanalysis data and data from the automatic weather station located 75 km from Lake Badswat, the occurrence of this disaster chain was related to high temperatures recorded after 15 July 2018. The chains of events caused by glacially related disasters makes such hazards more complex and dangerous. Therefore, this study is useful not only for understanding the formation of glacial disaster chains, but also for framing mitigation plans to reduce the risks for vulnerable downstream/upstream residents.

期刊论文 2021-05-09 DOI: http://dx.doi.org/10.3390/rs13061165

Glaciers in the Himalayan region have been receding rapidly in recent decades, drawing increasing concerns about the release of legacy pollutants (e.g., mercury (Hg)). To investigate the distribution, transport and controlling factors of Hg in glacier-fed runoff, from June 2019 to July 2020, a continuous monitoring and an intensive sampling campaign were conducted in the Rongbuk Glacier-fed basin (RGB) on the north slope of Mt. Everest in the middle Himalayas. The total Hg (THg) and methyl Hg (MeHg) concentrations were 1.56 +/- 0.85 and 0.057 +/- 0.025 ng/L, respectively, which were comparable to the global background levels and were mainly affected by the total suspended particulate matter (TSP). In addition, THg and MeHg showed significant diurnal variations, with peak values appearing at approximately 17:00 (upstream) and 19:00 (downstream). Based on the annual runoff and average Hg concentration, the annual export fluxes of THg and MeHg were estimated to be 441 g and 16 g, respectively. The yields of THg and MeHg in the RGB were 1.6 and 0.06 mu g/m(2)/year, respectively. Currently, the annual Hg export of meltwater runoff in the Himalayan region is approximately 337 kg/year. When flowing through the proglacial lake, the THg concentrations decreased by 32% and 15% in the proglacial lake water and in the outlet, respectively, indicating that proglacial lakes had a sedimentation effect on the Hg transport. The Hg export from meltwater runoff in the Himalayas will likely increase considering the meltwater runoff has been projected to increase in the future. Nonetheless, emerging proglacial lakes may exert ambiguous effects on the glacier exported Hg under changing climate. Proglacial lakes could lower the levels and amounts of Hg in the glacier runoff, whereas the outburst of proglacial lakes could lead to an instantaneous release of Hg stored in lake waters and sediments. Our analysis shed light on the environmental impact of glacier retreat in the Himalayas and highlighted the need for integrated monitoring and study of Hg in glacier runoff and glacial lakes.

期刊论文 2021-01-16 DOI: http://dx.doi.org/10.1016/j.watres.2022.118474 ISSN: 0043-1354

The China-Pakistan Economic Corridor (CPEC), a key hub for trade, is susceptible to glacial lake outburst floods. The distributions and types of glacial lakes in the CPEC are not well documented. In this study, cloud-free imagery acquired using the Landsat 8 Operational Land Imager during 2016-2018 was used to delineate the extent of glacial lakes in the mountainous terrain of the CPEC. In the study domain, 1341 glacial lakes (size >= 0.01 km(2)) with a total area of 109.76 +/- 9.82 km(2) were delineated through the normalized difference water index threshold method, slope analysis, and a manual rectification process. On the basis of the formation mechanisms and characteristics of glacial lakes, four major classes and eight subclasses of lakes were identified. In all, 492 blocked lakes (162 end moraine-dammed lakes, 17 lateral moraine-dammed lakes, 312 other moraine-dammed lakes, and 1 ice-blocked lake), 723 erosion lakes (123 cirque lakes and 600 other erosion lakes), 86 supraglacial lakes, and 40 other glacial lakes were identified. All lakes were distributed between 2220 and 5119 m a.s.l. At higher latitudes, the predominate lake type changed from moraine-related to erosion. From among the Gez, Taxkorgan, Hunza, Gilgit, and Indus basins, most glacial lakes were located in the Indus Basin. The number and area of glacial lakes were larger on the southern slopes of the Karakoram range.

期刊论文 2020-05-01 DOI: http://dx.doi.org/10.3390/ijgi9050294

Glacial lake outburst flood (GLOF) is one of the major natural disasters in the Qinghai-Tibetan Plateau (QTP). On 25 June 2020, the outburst of the Jiwenco Glacial Lake (JGL) in the upper reaches of Nidu river in Jiari County of the QTP reached the downstream Niwu Township on 26 June, causing damage to many bridges, roads, houses, and other infrastructure, and disrupting telecommunications for several days. Based on radar and optical image data, the evolution of the JGL before and after the outburst was analyzed. The results showed that the area and storage capacity of the JGL were 0.58 square kilometers and 0.071 cubic kilometers, respectively, before the outburst (29 May), and only 0.26 square kilometers and 0.017 cubic kilometers remained after the outburst (27 July). The outburst reservoir capacity was as high as 5.4 million cubic meters. The main cause of the JGL outburst was the heavy precipitation process before outburst and the ice/snow/landslides entering the lake was the direct inducement. The outburst flood/debris flow disaster also led to many sections of the river and buildings in Niwu Township at high risk. Therefore, it is urgent to pay more attention to glacial lake outburst floods and other low-probability disasters, and early real-time engineering measures should be taken to minimize their potential impacts.

期刊论文 2020-01-01 DOI: http://dx.doi.org/10.3390/rs13163114
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页