Ice sheet serves as a crucial indicator for assessing climate change. Mass loss in recent remote sensing-based studies indicated that the Antarctic Peninsula has rapid rates of glacier retreat and speed up of surface velocity. However, observations of seasonal variability of ice speed are limited, and glacier-area changes require multi-temporal monitoring. This study investigated the changes in area and surface velocities of similar to 375 glaciers on the northern Antarctic Peninsula (NAP) utilizing satellite images acquired by the Sentinel 1 & 2 satellites during 2018 - 2022. The results indicate that the glacier area reduced by approximately 166.1 +/- 44.2 km(2) (-0.2% +/- 0.1% per year) during the study period, with an acceleration after 2020 (-0.4% +/- 0.3% per year), and the most dramatic reduction happened on the eastern NAP. The maximum annual ice speeds on the NAP generally exceeded 3500 m per year, while the ice speeds in 2021 were the highest (exceeded 4210 m per year). The ice speed variability in austral autumn was higher than in other seasons, meanwhile the summer ice speeds showed an increasing trend. The glacier G012158E47018N, McNeile Glacier, glacier G299637E64094S and Drygalski Glacier showed the most remarkable ice speed variations represented by high daily velocities and strong fluctuations on their termini. Our results demonstrated that the variations in glacier area and seasonal ice speed on the NAP were responsive to the ice - ocean - atmosphere processes. Therefore, seasonal velocity and area variations should be considered when conducting accurate mass balance calculations, model validations and change mechanism analyses under climate warming scenarios.
Study region: The Sanjiangyuan, located on the Tibetan Plateau, is the headwater of the three large Asia Rivers- the Yangtze, Yellow and Lancang (upper Mekong) Rivers.Study focus: Mountain glacier melt runoff, an important buffer against drought, is enhancing with climate warming. Projection of glacier (especially small glaciers) runoff change is imperative for adapting to climate change and mitigating relevant risks. We aim to provide an up-to-date knowledge of the glacier area and runoff change for 2016-2099 in the Sanjiangyuan.New hydrological insights for the region: Projections based on CMIP6 archive show that 1) glacier area in the Sanjiangyuan for the four SSPs will shrink by 36 +/- 12 % (SSP1-2.6), 42 +/- 20 % (SSP2-4.5), 49 +/- 19 % (SSP3-7.0) and 61 +/- 15 % (SSP5-8.5) by the end of the 21st century. Small glacier dominated Lancang River basin is more sensitive to climate change than large glacier abundant Yangtze River basin and Yellow River basin. The Lancang River basin is pro-jected to experience the greatest relative glacier area shrinkage, 10 % of glacier area and 55 % of glacier number will disappear for SSP5-8.5; 2) annual glacier runoff in the Yangtze River and Yellow River will reach peak water around 2080 under SSP3-7.0, while the Lancang River is already in or near peak water timing for all SSPs. Higher emission scenario tends to yield later peak water timing due to the changes in snow melt.