共检索到 2

Myochrous armatus Baly, 1865 (Coleoptera: Chrysomelidae) has expanded its occurrence significantly into soybean-growing areas of Brazilian Cerrado and became an important early-season soil pest. Experiments were performed under field conditions from 2020 to 2023 to assess several aspects: (1) population behaviour over crop season and offseason; (2) day/night behaviour during the early stages of soybean plants and (3) injury to plants and potential damage to soybean yield to establish the Economic Injury Level (EIL). Adults of the M. armatus population presented a season-long abundance during the specific period from late October to January, with major captures in November and December (end of Spring), either inside or on the edge of soybean fields. Weeds and volunteer plants of corn and cotton hosts adults and eggs. These findings suggest an univoltine life cycle. Behavioural assessments revealed that M. armatus does not exhibit a specific day, night or crepuscular behaviour, performing deeds at any time. The majority of insects (40% to 70%) were found in the soil throughout the day and night. Adults feed on soybean plants by scraping or cutting the stem, cotyledon, petiole and apical sprouting. Their preference is initially for the stem and cotyledon (up to 14 days after emergence), and later for the petiole (after 21 days of emergence). After 7 days of coexistence at V1-V3 soybean stages, we observed a potential yield reduction of 35% for each insect per plant. Dynamic EIL estimations are between 0.4 and 1.9 adults per row metre, depending on the grower productivity expectation, control costs and soybean market value. Our results are fundamental for establishing Integrated Pest Management for M. armatus in soybean and other crop systems.

期刊论文 2024-11-01 DOI: 10.1111/jen.13327 ISSN: 0931-2048

Soybean is the main oilseed cultivated worldwide. Even though Brazil is the world's largest producer and exporter of soybean, its production is severely limited by biotic factors. Soil borne diseases are the most damaging biotic stressors since they significantly reduce yield and are challenging to manage. In this context, the present study aimed to evaluate the potential of a bacterial strain (Ag109) as a biocontrol agent for different soil pathogens (nematodes and fungi) of soybean. In addition, the genome of Ag109 was wholly sequenced and genes related to secondary metabolite production and plant growth promotion were mined. Ag109 showed nematode control in soybean and controlled 69 and 45% of the populations of Meloidogyne javanica and Pratylenchus brachyurus, respectively. Regarding antifungal activity, these strains showed activity against Macrophomia phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. For S. sclerotiorum, this strain increased the number of healthy plants and root dry mass compared to the control (with inoculation). Based on the average nucleotide identity and digital DNA-DNA hybridization, this strain was identified as Bacillus velezensis. Diverse clusters of specific genes related to secondary metabolite biosynthesis and root growth promotion were identified, highlighting the potential of this strain to be used as a multifunctional microbial inoculant that acts as a biological control agent while promoting plant growth in soybean.

期刊论文 2024-06-07 DOI: 10.1186/s12866-024-03282-9 ISSN: 1471-2180
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页