A novel actinomycete, strain 1_25(T), was isolated from soil under a black Gobi rock sample from Shuangta, PR China, and characterized using a polyphasic taxonomic approach. The results of comparative analysis of the 16S rRNA gene sequences indicated the 1_25(T) represented a member of the genus Streptomyces. Chemotaxonomic data revealed that 1_25(T) possessed MK-9(H-8) as the major menaquinone. The cell wall contained LL-diaminopimelic acid (LL-DAP) and the whole-cell sugar pattern consisted of ribose, glucose and galactose. Major fatty acid methyl esters were observed to be iso-C-16:0 (23.6%), and anteiso-C-15:0 (10.4%). The genomic DNA G+C content of 1_25(T) was 69 mol%. The results of phylogenetic analysis based on 16S rRNA gene sequence indicated that 1_25(T) had high sequence similarity with Streptomyces qinglanensis 172205(T) (98.1%), Streptomyces lycii TRM 66187(T) (98 %), and Streptomyces griseocarneus JCM4580(T) (98 %). In addition to the differences in phenotypic characters, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between 1_25(T) and closely related species were below the recommended threshold values for assigning strains to the same species. The fermentation product of 1_25(T) in ISP2 had an inhibitory effect on Staphylococcus aureus. On the basis of these genotypic and phenotypic characteristics, strain 1_25(T) (=JCM 34936(T)=GDMCC 4.216(T)) represents a novel species of the genus Streptomyces, for which the name Streptomyces gobiensis sp. nov. is proposed.
The Hexi Corridor is an arid region in northwestern China, where hypoliths are widely distributed, resulting from large amounts of translucent stone pavements. In this region, the water and heat distributions are uneven, with a descent gradient from east to west, which can affect the area's biological composition. The impact of environmental heterogeneity on the distribution of hypolithic microbial communities in this area is poorly understood, and this is an ideal location to investigate the factors that may influence the composition and structure of hypolithic microbial communities. An investigation of different sites with differences in precipitation between east and west revealed that the colonization rate decreased from 91.8% to 17.5% in the hypolithic community. Environmental heterogeneity influenced both the structure and function of the hypolithic community, especially total nitrogen (TN) and soil organic carbon (SOC). However, the effect on taxonomic composition was greater than that on ecological function. The dominant bacterial phyla in all sample sites were Cyanobacteria, Actinobacteria, Proteobacteria, and Deinococcus-Thermus, but the abundances varied significantly between the sampling sites. The eastern site had the highest relative abundance of Proteobacteria (18.43%) and Bacteroidetes (6.32%), while the western site had a higher relative abundance in the phyla Cyanobacteria (62%) and Firmicutes (1.45%); the middle site had a higher relative abundance of Chloroflexi (8.02%) and Gemmatimonadetes (1.87%). The dominant phylum in the fungal community is Ascomycota. Pearson correlation analysis showed that the soil's physicochemical properties were also associated with changes in community diversity at the sample sites. These results have important implications for better understanding the community assembly and ecological adaptations of hypolithic microorganisms.
Understanding how microbial communities adapt to environmental stresses is critical for interpreting ecological patterns and microbial diversity. In the case of the Gobi Desert, little is known on the environmental factors that explain hypolithic colonization under quartz stones. By analyzing nine hypolithic communities across an arid gradient and the effects of the season of the year in the Hexi Corridor of this desert, we found a significant decrease in hypolithic colonization rates (from 47.24 to 15.73%) with the increasing drought gradient and found two distinct communities in Hot and Cold samples, which survived or proliferated after a hot or a cold period. While Cold communities showed a greater species diversity and a predominance of Cyanobacteria, Hot communities showed a predominance of members of the Proteobacteria and the Firmicutes. In comparison, Cold communities also possessed stronger functions in the photosynthesis and carbon metabolism. Based on the findings of this study, we proposed that the hypolithic communities of the Hexi Corridor of the Gobi Desert might follow a seasonal developmental cycle in which temperature play an important role. Thus after a critical thermal threshold is crossed, heterotrophic microorganisms predominate in the hot period, while Cyanobacteria predominate in the cold period.
A novel Streptomyces strain, designated 3_2(T), was isolated from soil under the black Gobi rock sample of Northwest China. The taxonomic position of this strain was revealed by a polyphasic approach. Comparative analysis of the 16S rRNA gene sequences indicated that 3_2(T) was closely related to the members of the genus Streptomyces, with the highest similarity to Streptomyces rimosus subsp. rimosus CGMCC 4.1438 (99.17%), Streptomyces sioyaensis DSM 40032 (98.97%). Strain 3_2(T) can grow in media up to 13% NaCl. The genomic DNA G + C content of strain 3_2(T) was 69.9%. We obtained the genomes of 22 Streptomyces strains similar to strain 3_2(T), compared the average nucleotide similarity, dDDH and average amino acid identity, and found that the genomic similarity of the new isolate 3_2(T) to all strains was below the threshold for interspecies classification. Chemotaxonomic data revealed that strain 3_2(T) possessed MK-9 (H-6) and MK-9 (H-8) as the major menaquinones. The cell wall contained LL-diaminopimelic acid (LL-DAP) and the whole-cell sugars were ribose and glucose. The major fatty acid methyl esters were iso-C-16:0 (23.6%) and anteiso-C-15:0 (10.4%). The fermentation products of strain 3_2(T) were inhibitory to Staphylococcus aureus and Bacillus thuringiensi. The genome of 3_2(T) was further predicted using anti-smash and the strain was found to encode the production of 41 secondary metabolites, and these gene clusters may be key to the good inhibitory activity exhibited by the strain. Genomic analysis revealed that strain 3_2(T) can encode genes that produce a variety of genes in response to environmental stresses, including cold shock, detoxification, heat shock, osmotic stress, oxidative stress, and these genes may play a key role in the harsh environment in which the strain can survive. Therefore, this strain represents a novel Streptomyces species, for which the name Streptomyces halobius sp. nov. is proposed. The type strain is 3_2(T) (= JCM 34935(T) = GDMCC 4.217(T)).
Alluvial fans in southern Monglia occur along a group of narrow discontinuous mountain ranges which formed as transpressional uplifts along a series of strike-slip faults. They provide information on the nature of neotectonic activity in the eastern Gobi Altai range acid on palaeoclimate change. Alluvial fan formation was dominated by various geomorphological processes largely controlled by climatic changes related to an increase in aridity throughout late Quaternary times. Their sedimentology shows that initially they experienced humid conditions, when the sedimentary environments were dominated by perennial streams, followed by a period of increasing aridity, during which coarse fanglomerates were deposited in alluvial fans by ephemerial streams and active-layer structures were produced by permafrost within the alluvial fan sediments. With climatic amelioration during early Holocene times, the permafrost degraded and fan incision and entrenchment dominated. Sedimentation was then confined to the upper reaches of the fans, adjacent to steep mountain slopes, and within the entrenched channels. The alluvial fans have been neotectonically deformed, faulted and their surface warped by small thrust faults that propagate from the mountain fronts into their forelands. Localised uplift rates are in the order of 0.1 to 1 m Ka(-1). (C) 1997 John Wiley & Sons, Ltd.