共检索到 3

Two extremely devastating super dust storms (SDS) hit Mongolia and Northern China in March 2021, causing many deaths and substantial economic damage. Accurate forecasting of dust storms is of great importance for avoiding or mitigating their effects. One of the most critical factors affecting dust emissions is soil moisture, but its value in desert exhibits significant uncertainty. In this study, model experiments were conducted to simulate dust emissions using four soil moisture datasets. The results were compared with observations to assess the effects of soil moisture on the dust emission strength. The Integrated Source Apportionment Method (ISAM) was used to track the dust sources and quantify the contribution from each source region to the dust load over the North China Plain (NCP), Korea peninsula, and western Japan. The results show large differences in the dust load depending on the soil moisture datasets used. The high soil moisture in the NCEP dataset results in substantial underestimation of the dust emission flux and PM10 10 concentration. Despite a minor overestimation of PM10 10 concentrations in many Northern China cities, the ERA5 dataset yields the best simulation performance. During the two SDS events, about 7.5 Mt dust was released from the deserts in Mongolia and 2.8 Mt from the deserts in China. Source apportionment indicates that the Mongolian Gobi Desert is the dominant source of PM10 10 in the NCP, Korea peninsula, and western Japan, accounting for 60 %-80 %, while Inner Mongolia contributed 10 %- 20 %.

期刊论文 2024-11-10 DOI: 10.1016/j.scitotenv.2024.175289 ISSN: 0048-9697

The Hexi Corridor is an arid region in northwestern China, where hypoliths are widely distributed, resulting from large amounts of translucent stone pavements. In this region, the water and heat distributions are uneven, with a descent gradient from east to west, which can affect the area's biological composition. The impact of environmental heterogeneity on the distribution of hypolithic microbial communities in this area is poorly understood, and this is an ideal location to investigate the factors that may influence the composition and structure of hypolithic microbial communities. An investigation of different sites with differences in precipitation between east and west revealed that the colonization rate decreased from 91.8% to 17.5% in the hypolithic community. Environmental heterogeneity influenced both the structure and function of the hypolithic community, especially total nitrogen (TN) and soil organic carbon (SOC). However, the effect on taxonomic composition was greater than that on ecological function. The dominant bacterial phyla in all sample sites were Cyanobacteria, Actinobacteria, Proteobacteria, and Deinococcus-Thermus, but the abundances varied significantly between the sampling sites. The eastern site had the highest relative abundance of Proteobacteria (18.43%) and Bacteroidetes (6.32%), while the western site had a higher relative abundance in the phyla Cyanobacteria (62%) and Firmicutes (1.45%); the middle site had a higher relative abundance of Chloroflexi (8.02%) and Gemmatimonadetes (1.87%). The dominant phylum in the fungal community is Ascomycota. Pearson correlation analysis showed that the soil's physicochemical properties were also associated with changes in community diversity at the sample sites. These results have important implications for better understanding the community assembly and ecological adaptations of hypolithic microorganisms.

期刊论文 2022-09-01 DOI: http://dx.doi.org/10.3390/microorganisms11051212

Understanding how microbial communities adapt to environmental stresses is critical for interpreting ecological patterns and microbial diversity. In the case of the Gobi Desert, little is known on the environmental factors that explain hypolithic colonization under quartz stones. By analyzing nine hypolithic communities across an arid gradient and the effects of the season of the year in the Hexi Corridor of this desert, we found a significant decrease in hypolithic colonization rates (from 47.24 to 15.73%) with the increasing drought gradient and found two distinct communities in Hot and Cold samples, which survived or proliferated after a hot or a cold period. While Cold communities showed a greater species diversity and a predominance of Cyanobacteria, Hot communities showed a predominance of members of the Proteobacteria and the Firmicutes. In comparison, Cold communities also possessed stronger functions in the photosynthesis and carbon metabolism. Based on the findings of this study, we proposed that the hypolithic communities of the Hexi Corridor of the Gobi Desert might follow a seasonal developmental cycle in which temperature play an important role. Thus after a critical thermal threshold is crossed, heterotrophic microorganisms predominate in the hot period, while Cyanobacteria predominate in the cold period.

期刊论文 2022-02-15 DOI: http://dx.doi.org/10.1007/s00248-022-02043-3 ISSN: 0095-3628
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页