Root-knot nematodes (RKN) cause extensive damage to grapevine cultivars. RKN-resistant grapevine rootstocks remain vulnerable to biotic and abiotic stresses. This study aimed to determine the influence of composted animal manures (CAMs) [chicken manure (CM), cow manure (CowM), and sheep manure (SM)] with or without plant growth-promoting rhizobacteria (PGPR) on the population of Meloidogyne incognita, free-living nematodes (FLNs) and predaceous nematodes (PNs) residing in the soils of vineyard cultivars (Flame, Superior and Prime). The nematodes were isolated from grapevine roots and rhizosphere soils, then the absolute frequency of occurrence (FO), relative FO, prominence value (PV), and population density (PD) were assessed. The impact of CAMs and PGPR on the growth parameters, fruit output, and quality of three grapevine varieties was subsequently evaluated. Eight treatments included a control without CAMs or PGPR amendments, the CAMs alone, or CAM treatments combined with PGPR. The results showed that FLNs and PNs were more abundant in Prime than Flame or Superior cultivars when poor sandy loam soils were supplied with CAMs. Among all tested manures, CM was the best treatment as a nematicide. This was evident from the decreased numbers of M. incognita and increased numbers of FLNs and PNs in grapevine fields. Compared to the soil-applied oxamyl (a systemic nematicide), which was efficiently suppressive on M. incognita for two months, CM significantly (P < 0.05) decreased PD of the phytonematodes for five months, improved soil structure and enhanced the soil biological activities. There were significant (P < 0.05) increases in the number of leaves/vines by 79.9, 78.8, and 73.1%; and total fruit weight/vine by 76.9, 75.0, and 73.0% in Flame, Superior, and Prime varieties, respectively, compared to untreated vines. Regardless of the cultivar, soils amended with CM + PGPR achieved the lowest number of M. incognita among all other treatments, followed by SM + PGPR and CowM + PGPR. It was concluded that CAMs amendment, mainly CM, along with PGPR in poor sandy soils of temperate areas, is considered a sustainable approach for reducing parasitic nematodes and improving agricultural management.
High lime content in agricultural soils poses a significant challenge to crop production, particularly in viticulture. Due to the persistent and detrimental effects of lime stress on plant growth, the present study investigated the potential of iron oxide nanoparticles (Fe3O4-NPs) to mitigate lime-induced stress in 1103 Paulsen American grapevine rootstock. We examined the effects of Fe3O4-NPs (0, 0.01, 0.1, and 1 ppm) under varying lime stress conditions (0%, 20%, 40%, and 60% CaCO3). Our findings revealed that increasing lime content progressively inhibited grapevine growth, with significant reductions in shoot fresh weight, root fresh weight, shoot length, and leaf number. Fe3O4-NP application demonstrated pronounced protective effects: 0.1 ppm Fe3O4-NPs optimized growth under non-stressed conditions, while 1 ppm Fe3O4-NPs significantly improved plant performance under 60% lime stress. Notably, nanoparticle treatments mitigated oxidative stress by reducing membrane damage, lipid peroxidation, and leaf temperature while maintaining photosynthetic efficiency and osmotic balance. Fe3O4-NPs demonstrated significant potential in mitigating lime-induced stress in grapevines, with optimal concentrations of 0.1 ppm for low-moderate lime environments and 1 ppm for high lime content areas. These findings provide a targeted nanobiotechnological approach to enhance grapevine resilience in calcareous soils, advancing sustainable viticulture strategies.
Cold climate viticulture is challenged by climatic variability, including increased frost risk, shorter growing seasons, and unpredictable weather events that impact vine productivity and grape quality. Global warming is altering traditional viticulture zones, prompting the exploration of new regions for grape cultivation, the selection of climate-resilient cultivars, and the implementation of adaptive practices. This review synthesizes recent advances in adaptive viticulture practices and plant growth regulator applications, highlighting novel molecular and physiological insights on cold stress resilience and berry quality. Key strategies include delayed winter pruning to mitigate frost damage, osmoprotectant application to improve freeze tolerance, and canopy management techniques (cluster thinning and defoliation) to enhance berry ripening and wine composition. Their effectiveness depends on vineyard microclimate, soil properties and variety-specific physiological response. Cover cropping is examined for its role in vine vigor regulation, improving soil microbial diversity, and water retention, though its effectiveness depends on soil type, participation patterns, and vineyard management practices. Recent transcriptomic and metabolomic studies have provided new regulatory mechanisms in cold stress adaptation, highlighting the regulatory roles of abscisic acid, brassinosteroids, ethylene, and salicylic acid in dormancy induction, oxidative stress response, and osmotic regulation. Reflective mulch technologies are currently examined for their ability to enhance light interception, modulating secondary metabolite accumulation, improving technological maturity (soluble solids, pH, and titratable acidity) and enhancing phenolic compounds content. The effectiveness of these strategies remains highly site-specific, influenced by variety selection and pruning methods particularly due to their differences on sugar accumulation and berry weight. Future research should prioritize long-term vineyard trials to refine these adaptive strategies, integrate genetic and transcriptomic insights into breeding programs to improve cold hardiness, and develop precision viticulture tools tailored to cold climate vineyard management.
The microbiota, a component of the plant holobiont, plays an active role in the response to biotic and abiotic stresses. Nowadays, with recurrent drought and global warming, a growing challenge in viticulture is being addressed by different practices, including the use of adapted rootstocks. However, the relationships between these practices, abiotic stress and the composition and functions of the rhizosphere microbiota remain to be deciphered. This study aimed to unravel the impact of five rootstocks, water management and the combination of both on the rhizosphere bacterial microbiota in grapevines using shotgun metagenomics approach. The results showed that drought impacted the diversity, composition and functionality of the rhizosphere bacterial community. The genera Mycolicibacterium, Mycobacterium and Rhodococcus, and the bacterial functions, including DNA damage repair, fatty acid synthesis, sugar and amino acid transport, oxidative stress reduction, toxin synthesis and detoxification of exogenous compounds were significantly enriched under drought conditions. Rootstocks also significantly affected the rhizosphere bacterial richness but its influence on diversity and functionality compared to water management was weaker. Some taxa and function could be linked to water managements applied. The interaction between rootstocks and water management further influenced the rhizosphere composition, especially under drought conditions, where distinct clustering was observed for specific rootstocks. The results highlight the importance of conducting multifactorial studies to better understand their impact on shaping functional rhizosphere bacterial communities. This study paves the way for future research on beneficial bacterial inoculation and genetic engineering of rootstock to cope with drought stress.
Background and aimsA better understanding of plant carbon assimilation, water status and photosystem performance responses to combined heat and drought stress would help to optimize grapevine management under such limiting conditions.MethodsGas exchange and chlorophyll fluorescence parameters were measured in potted grapevines, cv Sauvignon Blanc, before, during and after simulated six-day heat (Tmax = 40 degrees C) wave using heated well-watered (HW), heated drought-stressed (HD), non-heated well-watered (CW) and non-heated dry (CD) vines.ResultsPhotosynthesis and stomatal conductance in HW vines increased during the morning and dropped in the afternoon with respect to CW vines. Daily plant transpiration in HW almost doubled that of CW vines. When grapevines were already exposed to drought, the effects of the heat wave were negligible, with HD plants showing similar leaf photosynthesis and transpiration to their CD counterparts. Heat, but not drought stress, decreased the maximum (Fv/Fm) and effective photochemical quantum yield of PSII (phi PSII), and also affected the use of absorbed energy. HW plants dissipated more radiative energy as heat, a protective mechanism of the photosystem, while HD vines increased the energy dissipated by non-regulated non-photochemical pathways, which might lead to photoinhibition damages. The different behavior could be due to the enhanced transpiration rate and consequent decrease in leaf temperature in HW as compared to HD vines. After the heat wave, only HW vines recovered the afternoon values of photosynthesis, stomatal conductance and phi PSII to similar levels as those in CW vines.ConclusionDrought had a more significant effect than heat stress on photosynthesis, stomatal conductance and transpiration. The combined heat and drought stress, however, increased the proportion of energy lost by the leaves through harmful non-regulated dissipative pathways. With adequate soil water availability, grapevines withstood the heat wave period through an increase in leaf transpiration, which decreased leaf temperature and protected the PSII from heat damage. Drought had a stronger impact on gas exchange parameters than elevated temperature during a simulated heatwave, while heat stress was the main driver of PSII functionality and absorbed energy partitioning. Well-watered grapevines were able to recover their physiological function after a six-day heatwave (Tmax 40 degrees C), while plants under heat and drought stress were unable to resume PSII performance after one day of recovery.
Ridging cultivation and root restriction cultivation are beneficial due to their improvement of the soil permeability in the root zone of grapevine, and they are widely used in southern China, Japan, and other countries. However, with the intensification of global warming, when using ridging or root restriction cultivation, the soil temperature in the root zone can often reach 30 degrees C or even more than 35 degrees C during the summer, which is not conducive to the growth of grapevines. The aim of this study was to explore the effects of high root zone temperatures on the photosynthetic fluorescence characteristics of grapevine leaves, root respiration, and degree of lignification of roots and shoots, as well as to provide a theoretical foundation for the management of grapevine production and cultivation. One-year-old potted 'Kyoho' was used as the study material. Three root temperature treatments were implemented for 15 days (9:00-16:00): 25 degrees C (CK), 30 degrees C (T1), and 35 degrees C (T2). The results showed that the malondialdehyde and H2O2 levels in leaves increased, while the chlorophyll content decreased. The oxygen-evolving complex was inactivated, and PSII donor and acceptor sides were blocked, thus reducing the photosynthetic gas exchange capacity at high root zone temperatures. The grapevine root activity and root/shoot ratio decreased. Simultaneously, the lignin content in the roots and shoots increased. In addition, there was a significant increase in the expression of key genes (PAL, C4H, 4CL, F5H, COMT, CCR, and CAD) in the root lignin synthesis pathway. Heightened root zone temperatures increased cyanide-resistant respiration in roots and heat release in the PPP pathway to alleviate stress damage. Therefore, it is recommended to use grass, mulching, and other cultivation management methods to maintain root zone temperatures below 30 degrees C in order to ensure the normal growth of grapevines and promote a high and stable yield.
Precision agriculture (PA), also known as smart farming, has emerged as an innovative solution to address contemporary challenges in agricultural sustainability. A particular sector within PA, precision viticulture (PV), is specifically tailored for vineyards. The advent of the Internet of Things (IoT) has facilitated the acquisition of higher resolution meteorological and soil data obtained through in situ sensing. The integration of machine learning (ML) with IoT-enabled farm machinery stands at the forefront of the forthcoming agricultural revolution. These data allow ML-based forecasting as an alternative to conventional approaches, providing agronomists with predictive tools essential for improved land productivity and crop quality. This study conducts a thorough examination of vineyards with a specific focus on three key aspects of PV: mitigating frost damage, analyzing soil moisture levels, and addressing grapevine diseases. In this context, several ML-based models are proposed in a real-world scenario involving a vineyard located in Southern Italy. The test results affirm the feasibility and efficacy of the ML models, demonstrating their potential to revolutionize vineyard management and contribute to sustainable agricultural practices.
Attacks of plant-parasitic nematodes can seriously affect grapevine yield and quality, also due to synergistic damages caused by the co-presence of nematodes and viruses. A survey was carried out in vineyards from a D.O.C.G. area of Veneto region, Italy, in order to better understand the relationship between grapevine plants and presence of phytonematodes. Most concerns were raised by detection of species as Mesocriconema xenoplax and Xiphinema index, this latter as the vector of grapevine fanleaf virus (GFLV), the most economically important nepovirus in vineyards. Some individuals of Pratylenchus vulnus were also found. Numerous predaceous nematodes as Mononchida were found within several soil samples. Mononchida play an important role in contrasting the spread of other nematodes, including plant-parasitic nematodes. During the survey, other non-plant-parasitic nematodes as Dorylaimina and Rhabditida were homogeneusly distribuited among samples.
The wine sector, among the most profitable agricultural segments, has been markedly affected by the ongoing climate change impacts, such as warmer climate conditions with higher frequency of extreme temperatures and a trend of decreasing precipitation. All this results in higher evaporative demand and therefore higher occurrence of water stress events leading to advancement of temperature-sensitive phenological stages (e.g., budburst and ripening). Such negative effects eventually affect berry development and quality, especially in historically valuable viticultural areas, forcing winegrowers to work within a compressed harvest period to maintain wine typicity. In this work we examined the relationship between environmental variables (air and soil temperature, relative humidity, precipitation, and solar radiation), phenology, berry, and wine quality for the two varieties (Chardonnay and Teroldego) in Trentino Alto-Adige/South Tyrol (Italy) over 36 years. Huglin Index (a bioclimatic heat index), growing degree days (measure of heat accumulation), and overall mean temperature showed linear increase (p < 0.001) in the last years, while no variations were recorded for precipitations. Despite no major effects being observed for phenological interval lengths, the onset of most of the phenological stages for both varieties had significantly (p < 0.001) advanced. However, i) early budburst pushed the budburst-flowering interphase by-1.2 days every two years toward putative colder periods with increased late frost probability and potential slower phenological progression towards flowering, and ii) early veraison shifted the veraison-ripening interphase by 0.25 day per year into warmer periods that oppositely impose faster phenological advancement. Hence, a substantial equilibrium in the seasonal growing length over years was maintained. Potential carry-over effects from the previous season were observed, particularly associated with heat requirements to unlock early phenological events, raising additional concerns on the additive effects of climate change to viticulture. Generally, white wine quality increased (p < 0.05) over the years, while red and sparkling wines remained unaffected. This was putatively related to accurate harvest date decision-making dictated by berry quality parameters: sugar-to-acidity ratio for Chardonnay and bunch sanitary status for Teroldego. Overall, this work provides evidence of the dynamics involved in climate change, and, to our knowledge, its overlooked effects on viticulture, thus providing new insights that can contribute to further developing adaptive strategies.
The aim of the study was to be determine the effects of conventional and organic soil and vine nutrition management on the growth, physiology and grape quality of vines of cv. 'Robola' in Kefalonia island, Greece. The overall aim was to understand and evaluate the combined effects of these different viticultural practices on soil quality (fertility) and on the physiological parameters of the vine as well as on grape quality, in terms of production sustainability and environmental biodiversity. The physiological parameters that were assessed and determined were leaf assimilation rate, leaf stomatal conductance, leaf transpiration and chlorophyll content. Additionally, grape and berry mechanical properties were also evaluated. The results of all the combinations of the two soil treatments with the three different nutrition methods (organic and two conventional), showed no statistically significant difference regarding the grape and berry mechanical properties. Moreover, the viticultural practice with reduced tillage and the application of slow-release fertilizer appears to show higher concentration of total soluble solids and higher pH and titratable acidity. Finally, the viticultural practice with the usual tillage (milling) and the application of fertilization with stems exhibited the highest values in the physiological parameters that were studied.