共检索到 2

Although many studies have found that global warming has caused permafrost to thaw, we still lack understanding of the mechanism relating permafrost thawing and ecosystem carbon budgets. To compare the effects of freeze-thaw cycles on the grassland ecosystem carbon budget between a permafrost area (PA) and a non-permafrost area (NPA), we established two carbon dioxide flux towers since 2015 to monitor the net ecosystem exchange by eddy covariance (EC) systems at the site of Nalaikh in PA and Hustai in NPA. The gross primary production (GPP), respiration by ecosystems (Reco), and net ecosystem production (NEP) from 2016 to 2019 were estimated using EddyPro 7 and ToviTM. The result showed that, at the PA and NPA sites, the annual GPP was 686.3 and 654.9 g C m- 2 y-1, Reco was 611.5 and 699.6 g C m- 2 y-1, and NEP was 73.8 and -45.5 g C m-2 y- 1, respectively, which implies that the grassland ecosystem was a carbon sink in the PA but a carbon source in the NPA. Then, the effect of the freeze-thaw cycles on the carbon budget was also analyzed. The NEP in the PA (35.3 g C m-2) was significantly larger than in the NPA (0.3 g C m-2) during the thawing period and, similarly, the NEP in the PA (121.7 g C m-2) was also larger than in the NPA (72.1 g C m-2) during the thawed period, implying significantly larger carbon absorption in the PA than in the NPA during both the thawing and thawed periods. Finally, correlation analysis results revealed that the soil water content (SWC) plays an important role in maintaining the ecosystem carbon budget. The degradation of permafrost might accelerate soil thawing and promote the transfer of soil water, and thus greatly affect the carbon budget of grassland ecosystems in Mongolia.

期刊论文 2023-01-01 DOI: 10.1016/j.gecco.2023.e02373

In the last two decades the major focus of study in forest water and carbon balances in eastern Siberia has been on the effect of rain during the growing season. Little attention has been paid to the contribution of snowmelt water. The results of the present study indicate that weather conditions during the snowmelt period as well as the soil moisture conditions carried from the previous year's growing season strongly determined the water availability for the forest ecosystem at the beginning of the next growing season. In the forest-grassland intermingled ecosystem of lowland Central Yakutia, gradual snowmelt water flow from the forest into the adjacent grassland depressions increased when soil moisture was high and air temperature was low, whereas low soil moisture and high air temperatures accelerated soil thawing and consequently snowmelt water infiltration into the forest soil. We found that snow depth did not determine the volume of snowmelt water moving to the grassland depression since the thermokarst lake water level in the adjacent grassland was about 25 cm lower in 2005 than in May 2006, even though maximum snow depth reached 57 cm and 43 cm in the winter of 2004-05 and 2005-06, respectively. The contribution of snowmelt water to forest growth as well as the flow of water from the forest to the grasslands showed a strong annual variability. We conclude that warmer springs and high variability in precipitation regimes as a result of climate change will result in more snowmelt water infiltration into the forest soil when the previous year's precipitation is low while more snowmelt water will flow into the thermokarst lake when the previous year's precipitation is high. Copyright (C) 2015 John Wiley & Sons, Ltd.

期刊论文 2015-07-01 DOI: 10.1002/hyp.10424 ISSN: 0885-6087
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页