共检索到 14

Soil freeze-thaw state influences multiple terrestrial ecosystem processes, such as soil hydrology and carbon cycling. However, knowledge of historical long-term changes in the timing, duration, and temperature of freeze-thaw processes remains insufficient, and studies exploring the combined or individual contributions of climatic factors-such as air temperature, precipitation, snow depth, and wind speed-are rare, particularly in current thermokarst landscapes induced by abrupt permafrost thawing. Based on ERA5-Land reanalysis, MODIS observations, and integrated thermokarst landform maps, we found that: 1) Hourly soil temperature from the reanalysis effectively captured the temporal variations of in-situ observations, with Pearson' r of 0.66-0.91. 2) Despite an insignificant decrease in daily freeze-thaw cycles in 1981-2022, other indicators in the Qinghai-Tibet Plateau (QTP) changed significantly, including delayed freezing onset (0.113 d yr- 1), advanced thawing onset (-0.22 d yr- 1), reduced frozen days (-0.365 d yr- 1), increased frozen temperature (0.014 degrees C yr- 1), and decreased daily freeze-thaw temperature range (-0.015 degrees C yr- 1). 3) Total contributions indicated air temperature was the dominant climatic driver of these changes, while indicators characterizing daily freeze-thaw cycles were influenced mainly by the combined effects of increased precipitation and air temperature, with remarkable spatial heterogeneity. 4) When regionally averaged, completely thawed days increased faster in the thermokarstaffected areas than in their primarily distributed grasslands-alpine steppe (47.69%) and alpine meadow (22.64%)-likely because of their stronger warming effect of precipitation. Locally, paired comparison within 3 x 3 pixel windows from MODIS data revealed consistent results, which were pronounced when the thermokarst-affected area exceeded about 38% per 1 km2. Conclusively, the warming and wetting climate has significantly altered soil freeze-thaw processes on the QTP, with the frozen soil environment in thermokarstaffected areas, dominated by thermokarst lakes, undergoing more rapid degradation. These insights are crucial for predicting freeze-thaw dynamics and assessing their ecological impacts on alpine grasslands.

期刊论文 2025-06-30 DOI: 10.1016/j.catena.2025.108936 ISSN: 0341-8162

Grasslands support multiple ecosystem functions and services, and diverse biota, and are critical for human wellbeing. Grazing is the most pervasive land use in grasslands, but can have damaging effects when poorly managed. How grazing management and the environment interact to affect ecosystem functions globally is less well understood. Addressing this knowledge gap is important if we are to evaluate where (climate region, soil texture, and grassland type), what (livestock type), and how (grazing intensity, grazing regime, and duration) grazing might minimize grassland degradation and sustain healthy grassland functions. We used a systematic metaanalysis to explore the effects of grazing on ecosystem functions (primary production, carbon sequestration, water conservation, nutrient cycle, and decomposition) based on 3917 paired data from 148 studies across the globe. We found that grazing substantially reduced plant productivity (-26 %), followed by water conservation (-18 %) and carbon sequestration (-19 %). The value of most ecosystem functions declined with increasing grazing intensity, and more pronounced negative effects of grazing with mixed-herbivore than single species grazing. Grazing impacts also varied with environmental conditions, with light grazing increasing carbon sequestration in arid regions, but reducing it in semi-arid regions. Further, increasing aridity indirectly weakened the positive impacts of light grazing on ecosystem functions by suppressing grazing effects. Our study suggests that the interactions between grazing management and environmental conditions are critical when assessing the effects of grazing on grassland functions, and this will likely be more important as climates become hotter and drier.

期刊论文 2025-02-01 DOI: 10.1016/j.agee.2024.109296 ISSN: 0167-8809

Semi-natural grasslands and their diverse biota are threatened by changes in land-use like afforestation, abandonment of traditional practices, urban development or conversion into intensive agricultural land. Extensive loss and fragmentation of semi-natural grasslands consequently affects ecosystem functioning inherit to open landscapes and the sustainable provision of ecosystem services. Ecological restoration of grasslands has potential to halt further decline and hopefully reverse some of the damage done to the grasslands and vital ecosystem services they provide. By assessing grasslands before and after the restoration, we evaluated how restoring overgrown and forested semi-natural grasslands to open grasslands impacts nine ecosystem services: habitat maintenance, soil condition maintenance, soil carbon storage, pollination, pest regulation, provision of wild food and medicinal herbs, forage production, wood production and recreation. We also analyzed the relationship between ecosystem multifunctionality and species richness of multiple organism groups. We found that already few years after restoration, restored grasslands exhibited rapidly increasing biodiversity and ecosystem service provision. Similarly, the overall ecosystem multifunctionality increased significantly after restoration in previously overgrown and afforested grasslands. However, while a robust and strong positive relationship between multitrophic diversity and ecosystem multifunctionality existed before restoration, this relationship was somewhat weakened after restoration. We propose two potential explanations: first, the previously distinct condition classes became more similar, starting to resemble open grassland habitats in their species richness and composition. Second, the relationship may have been weakened by the temporarily disrupted and transitional nature of the ecosystem post-restoration, due to varying recovery rates among different species groups and ecosystem services. Notably, soil-related services (carbon storage and soil maintenance) take longer to respond to restoration, compared to other services. In addition, we detected significant negative impact of prolonged drought on pest regulation and forage production service in both restored and unrestored areas. Semi-natural grasslands are both biodiversity and ecosystem service hotspots in European landscapes and restoring these habitats significantly increases the provision potential of important ecosystem services. However, restoration planning must consider landscape history, regional characteristics and the importance of long-term monitoring for getting the most accurate results.

期刊论文 2024-10-15 DOI: 10.1016/j.agee.2024.109139 ISSN: 0167-8809

Background and aimsArbuscular mycorrhizal (AM) fungi are common mutualists in grassland and savanna systems that are adapted to recurrent fire disturbance. This long-term adaptation to fire means that AM fungi display disturbance associated traits which should be useful for understanding environmental and seasonal effects on AM fungal community assembly.MethodsIn this work, we evaluated how fire effects on AM fungal spore traits and community composition vary with fire season (Fall vs. Spring) and time since fire. We tested this by analyzing AM fungal spore traits (e.g., colorimetric, sporulation, and size) from a fire regime experiment.ResultsImmediately following Fall and Spring fires, spore pigmentation darkened (became less hyaline); however, this trait response was not linked to fire driven changes in spore community composition and likely implies a plastic spore pigmentation response to fire. Six months after Fall fires, spores in burned plots were lower in volume, produced less color rich pigment, and had higher sporulation rates, and these differences in spore traits were associated with shifts in AM fungal spore communities demonstrating environmental filtering.ConclusionFire drove plastic and longer-term changes in AM fungal spore traits and community assembly that varied with fire season (stronger effects in Fall) and time since fire. This demonstrates the utility of applying trait-based approaches to microbial community assembly, and the importance of considering changes in community assembly across time.

期刊论文 2024-10-01 DOI: 10.1007/s11104-024-06500-5 ISSN: 0032-079X

Study region: The source region of the Yangtze River in the Qinghai-Tibet Plateau, China. Study focus: In the context of global warming, conducting a comprehensive study on the hydrothermal processes and their influencing factors in the permafrost active layer of the Tibetan Plateau is crucial for gaining a better understanding of the ecohydrological processes in alpine grasslands. In this study, we analyzed differences in soil temperature and humidity change patterns in the active layer of four alpine grassland types in the Totuohe Basin of the Yangtze River source area. We aimed to discuss the influence of vegetation, soil, and other factors on the hydrothermal mechanism of the active layer. The main research results are as follows: (1) Significant differences in the active layer's hydrothermal regime, with higher vegetation cover correlating to lower thaw indices and better moisture conditions. (2) Vegetation and water content strongly influence thermal conditions and active layer thickness. In high-cover alpine meadows, ground surface temperature is lower with a 200 cm active layer, while swamp meadows have a shallowest layer at 160 cm. (3) Deeper active layer moisture is influenced by freezing and thawing, while shallower layers are affected by warm-season precipitation and soil texture. (4) Negative heat fluxes in the topsoil of alpine swamp and high-cover meadows indicate substantial heat release, likely contributing to permafrost preservation due to high active layer water content. New hydrological insights for the region: (1) Vegetation cover significantly influences the thermal and moisture conditions of the active layer, with higher vegetation associated with lower thaw indices and better moisture conditions. (2) Soil moisture distribution within the active layer is controlled by both freeze-thaw cycles and warm-season precipitation, indicating complex interactions between seasonal processes and soil properties.

期刊论文 2024-08-01 DOI: 10.1016/j.ejrh.2024.101850

Permafrost temperature is a vital indicator of climate and permafrost changes, benefiting ecosystem development and informing local climate strategies. Alpine grasslands impact moisture and heat exchange between the surface and atmosphere, thereby affecting the thermal state of underlying permafrost. This study analyzed permafrost temperatures (2004-2019) from various alpine grasslands (including alpine meadow, alpine steppe, alpine desert grassland, and barren land) in the Beiluhe region of the Tibetan Plateau and revealed their connections to climate change and controlling factors, using time-frequency analysis. The findings revealed that in the time-frequency domain, permafrost temperatures exhibited multiple time scales characteristics, driven by climate fluctuations. Changes in the active layer closely followed monthly climate variations, while permafrost dynamics responded to annual climate changes. Significant oscillations with periods of 10-11, 8-9, and 14 years were observed in the surface, permafrost table, and deep permafrost layers, respectively. Among the different types of alpine grasslands, alpine meadows proved to be the most sensitive to climate change, with the intensity of periodic fluctuations initially decreasing and then increasing with depth in alpine meadows, while it consistently decreased with depth in the other three alpine grasslands. The impact of air temperature, precipitation, and wind speed on permafrost dynamics exhibited depth-dependent variations in the time-frequency domain, contrasting with the time domain where permafrost temperature changes were predominantly associated with air temperature across all depths.

期刊论文 2024-06-01 DOI: 10.1016/j.catena.2024.108065 ISSN: 0341-8162

As the largest and highest plateau in the world, ecosystems on the Tibetan Plateau (TP) imply fundamental ecological significance to the globe. Among the variety, alpine grassland ecosystem on the TP forms a critical part of the global ecosystem and its soil carbon accounts over nine tenths of ecosystem carbon. Revealing soil carbon dynamics and the underlying driving forces is vital for clarifying ecosystem carbon sequestration capacity on the TP. By selecting northern TP, the core region of the TP, this study investigates spatiotemporal dynamics of soil total carbon and the driving forces based on two phases of soil sampling data from the 2010s and the 2020s. The research findings show that soil total carbon density (STCD) in total-surface (0-30 cm) in the 2010s (8.85 +/- 3.08 kg C m(- 2)) significantly decreased to the 2020s (7.15 +/- 2.90 kg C m(-2)), with a decreasing rate (Delta STCD) of -0.17 +/- 0.39 kg C m(-2) yr(-1). Moreover, in both periods, STCD exhibited a gradual increase with soil depth deepening, while Delta STCD loss was more apparent in top-surface and mid-surface than in sub-surface. Spatially, Delta STCD loss in alpine desert grassland was - 0.41 +/- 0.48 kg C m(- 2) yr(-1), which is significantly higher than that in alpine grassland (-0.11 +/- 0.31 kg C m(- 2) yr(- 1)) or alpine meadow (-0.04 +/- 0.28 kg C m(- 2) yr(- 1)). The STCD in 2010s explained >30 % of variances in Delta STCD among the set of covariates. Moreover, rising temperature aggravates Delta STCD loss in alpine desert grassland, while enhanced precipitation alleviates Delta STCD loss in alpine meadow. This study sheds light on the influences of climate and background carbon on soil total carbon loss, which can be benchmark for predicting carbon dynamics under future climate change scenarios.

期刊论文 2024-04-20 DOI: 10.1016/j.scitotenv.2024.171190 ISSN: 0048-9697

The extent of European sub-alpine grasslands and their associated ecosystem services are decreasing due to woody plant encroachment. Commonly used methods of woody vegetation suppression like prescribed burning or clearcutting usually cause little damage to belowground bud-banks, offering poor results against re-sprouting shrubs. In this study, we assessed the effects on vegetation and soil properties of two mechanical shrub removal methods for restoring sub-alpine grasslands colonized by the re-sprouting shrub Rosa sp. in the Central Spanish Pyrenees: a commonly used method based on clearcutting (Clearcutting); and a non-previously assessed method based on pulling shrubs off the soil to remove both the aerial and belowground bud-banks (Uprooting). We set a parallel experiment to test whether or not clustering Rosa sp. debris generated in Uprooting (which held many mature fruits) at certain grassland locations may promote colonization of new grassland spots by Rosa sp. seedlings. By the end of the study period, vegetation composition and structure was more similar to the reference grassland in Uprooting than in Clearcutting. Indeed, woody vegetation cover was 71 % smaller in Uprooting than in Clearcutting three years after shrub removal. Nevertheless, by the end of the study period, chemical and microbiological soil properties were slightly more similar to the reference grassland in Clearcutting than in Uprooting. Additionally, the results of our study showed that clustering unusually high number of mature fruits of Rosa sp. at certain grassland locations increased shrub seedling colonization in comparison with other areas of the reference grassland, indicating that operational planning needs to take into account shrub phenology. In conclusion, our work showed that Uprooting may be a useful tool for land managers aiming to restore sub-alpine grasslands colonized by re-sprouting shrubs, though it is advisable using it for scatter shrub patches to prevent significant medium to long-term soil disturbance at landscape scale.

期刊论文 2024-01-01 DOI: 10.1016/j.jenvman.2023.119450 ISSN: 0301-4797

Runoff processes in glacier and paramo catchments in the Andean region are of interest as they are vitally important to serve the water needs of surrounding communities. Particularly in Northern Ecuador, the runoff processes are less well-known due to the high variability of precipitation, young volcanic ash soil properties, soil moisture dynamics and other local factors. Previous studies have shown that the melting of glaciers contributes to runoff generation and that the paramo ecosystem plays an important role in regulating runoff during periods of low precipitation. Data collection and experimental investigations were carried out in a catchment of 15.2 km(2) and altitude ranging between 4000 and 5700 m above sea level. Environmental tracers and hydrochemical catchment characterization were used for identifying runoff sources and their respective contributions during dry and wet conditions. Dry conditions are defined as periods where precipitation was absent for at least three consecutive days and wet conditions imply rainfall events. This study highlights the importance of the paramo on contributing to total runoff during baseflow (70% of total runoff) and the capacity of the paramo to dissipate the stream energy and buffer the peak flow during rainfall conditions. Electrical conductivity together with stable isotopes were identified as conservative tracers that characterize the end-member concentrations.

期刊论文 2023-07-03 DOI: 10.1080/24705357.2021.2005472 ISSN: 2470-5357

Aims Quantitatively assess the foraging and burrowing effects of plateau pikas (Ochotona curzoniae, hereafter pikas) on vegetation biomass and soil organic carbon at plot scale. Methods Combining field surveys and aerial photographing, we investigated pikas density, vegetation biomass, soil organic carbon and total nitrogen at quadrat-scale in 82 grassland sites of the Qinghai-Tibetan Plateau. We then upscaled these variables to plot-scale and eventually quantified pikas' foraging and burrowing effects on aboveground biomass and soil organic carbon. Results Pikas have a wide distribution, with densities ranging from 40.29 to 71.40 ha(-1). Under this density level, pikas consume approximate 21% to 40% of the total vegetation biomass, while their burrowing activity causes less than 1% vegetation biomass reduction. However, pikas burrowing transfers 1 to 5 T ha(-1)of soil to the ground surface, which contains approximate 20 to 70 kg ha(-1)of soil organic carbon and 2 to 5 kg ha(-1)of total nitrogen. Conclusions Vegetation biomass is susceptible to the foraging influence of pikas. Pikas burrowing activity has a potential impact on soil organic carbon loss and thus vegetation growth. These results are conducive to improve our understanding of the effects of pikas on regulating alpine grasslands. Unmanned aerial vehicle is a feasible and efficient tool to perform the monitoring extensiveness plots and study the role of pikas.

期刊论文 2023-04-15 DOI: http://dx.doi.org/10.1007/s11104-020-04489-1 ISSN: 0032-079X
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共14条,2页