共检索到 45

This investigation examines the development of titanium slag-flue gas desulfurized gypsum-Portland cement ternary composites (the ternary composites) for the solidification and stabilization of Pb-contaminated soils. The efficacy of the ternary composites is systematically evaluated using a combination of experimental methodologies, including mechanical properties such as unconfined compressive strength, stress-strain behavior and elastic modulus, leaching toxicity, XRD, TG-DTG, FTIR, XPS, and SEM-EDS analyses. The results indicate that the mechanical properties of Portland cement solidified Pb-contaminated soils are inferior to those of Portland cement solidified Pb-free soil, both in the early and later stages. However, the mechanical properties of Pbcontaminated soils solidified by the ternary composites are superior to those of the ternary composites solidified Pb-free soils in the early stage but somewhat inferior in the later stage. The ternary composites significantly decrease the leached Pb concentrations of solidified Pb-contaminated soils, which somewhat increase with the Pb content and with the pH value decrease of the leaching agent. Moreover, with much lower carbon emissions index and strength normalized cost, the ternary composites have comparable stabilization effects on Pbcontaminated soils to Portland cement, suggesting that the ternary composites can serve as a viable alternative for the effective treatment of Pb-contaminated soils. Characterization via TG-DTG and XRD reveals that the primary hydration products of the ternary composite solidified Pb-contaminated soils include gypsum, ettringite, and calcite. Furthermore, FTIR, XPS and SEM-EDS analyses demonstrate that Pb ions are effectively adsorbed onto these hydration products and soil particles.

期刊论文 2025-08-15 DOI: 10.1016/j.conbuildmat.2025.142096 ISSN: 0950-0618

This study investigates salt weathering in the indoor, humid environment of China's Jinsha earthen site. Methods such as digital microscope, scanning electron microscopy (SEM), ion chromatography (IC), energy dispersive spectroscopy (EDS), and laser particle size analysis were employed to collect and analyze samples from four heavily weathered walls. The sampling approach took into account differences in depth and height and prioritized the extraction from various weathering layers to unveil the attributes, causes, and mechanisms of salt weathering. The findings indicate that the Jinsha site's eastern segment suffered salt-induced damage, such as powdering, salt crusts, and blistering, due to the presence of gypsum and magnesium sulfate. These salts were primarily sourced from groundwater. Groundwater ions ascended to the site's surface via capillary action, instigating various forms of salt damage. Salt damage severity has a direct link to salt and moisture content. The degradation patterns can be categorized into powder and multi-layered composite deterioration, both seems related to soil particle composition. Powder deterioration tends to occur when the sand content exceeds 40%. This research proposes preservation strategies that focus on managing groundwater and conducting environmental surveillance. These measures are designed to effectively address and mitigate the risks associated with salt damage.

期刊论文 2025-07-03 DOI: 10.1080/15583058.2024.2330954 ISSN: 1558-3058

Phosphogypsum (PG) is produced in large quantities, and its main resource utilization is in the construction sector. This study investigates the feasibility of using PG to manufacture phosphogypsum composite cement-based permeable bricks (PGCPB), focusing on the effects of aggregate size distribution, water-to-binder ratio, and slag powder (SP) content on their mechanical and durability properties and assesses the potential risks related to heavy metal content in PGCPB. The results indicate that the highest 3-day compressive strength of PGCPB is 21.1 MPa at a water-cement ratio of 0.26. The maximum 3-day compressive strength of 25.78 MPa is achieved when the fine-to-coarse aggregate ratio is 3:2. At 14 days, SEM observations reveal that incorporating 20% SP leads to an optimal crystalline microstructure and a denser matrix, corresponding to flexural and compressive strengths of 4.47 MPa and 15.25 MPa, respectively. The 14-day flexural and compressive strengths of the cementing material are 4.47 MPa and 15.25 MPa, respectively, when the SP content is 20%. With an increase in PG proportion, the 28-day compressive strength of PGCPB declines, the water permeability coefficient first rises and then falls, and its frost resistance progressively deteriorates. When PG content is 20-30%, PGCPB meets the JC/T 945-2005 permeability standard and reduces carbon emissions by 22.91% compared to conventional cement-based bricks. Environmental risk assessments confirm that PGCPB poses no risk to either soil ecology or human health, making it a safe and eco-friendly material for pavement applications.

期刊论文 2025-06-18 DOI: 10.1007/s43452-025-01251-1 ISSN: 1644-9665

Foamed lightweight soil (FLS) is frequently used for roadbed backfilling; however, excessive cement use contributes to higher costs and energy consumption. Desulfurized gypsum (DG), a by-product of industrial processing with a chemical composition similar to natural gypsum, presents a viable alternative to cement. This study evaluates the potential of DG to replace cement in FLS, creating a new material, desulfurized gypsum foamed lightweight soil (DG-FLS). This article is conducted on DG-FLS with varying DG content (0-30%) to assess its flowability, water absorption, unconfined compressive strength (UCS), durability, and morphological characteristics, with a focus on its suitability for roadbed backfilling, though its performance over the long term in engineering applications was not evaluated. Results show that as DG content increased, flowability, water absorption, and UCS decreased, with values falling within the range of 175-183 mm, 8.24-12.49%, and 0.75-2.75 MPa, respectively, all of which meet embankment requirements. The inclusion of DG enhanced the material's plasticity, improving failure modes and broadening its applicability. Durability tests under wet-dry and freeze-thaw cycles showed comparable performance to traditional FLS, with UCS exceeding 0.3 MPa. Additionally, the incorporation of SO42- in DG-FLS reduced sulfate diffusion, decreased C-S-H content, and increased calcium sulfate content, improving sulfate resistance. After 120 days of exposure to sulfates, the durability coefficient of DG-FLS surpassed 100%, with a 25% improvement over traditional FLS. A sustainability analysis revealed that DG-FLS not only meets engineering strength requirements but also offers economic and environmental benefits. Notably, DG-12 showed a 20% reduction in environmental impact compared to conventional FLS, underscoring its potential for more sustainable construction.

期刊论文 2025-06-02 DOI: 10.1007/s13369-025-10334-3 ISSN: 2193-567X

Soft soil foundations need to be reinforced because of their low bearing capacity and susceptibility to deformation. Ordinary portland cement (OPC) is widely used in foundation treatment due to its strong mechanical properties. However, the production process for OPC curing agents involves high energy consumption and significant CO2 emissions. Given these problems, this paper proposes a fly ash-slag-based geopolymer to replace OPC curing agents, which can solidify soil while reducing OPC consumption. Another issue is that variability in environmental conditions influences the strength of soil solidified with fly ash-slag-based geopolymer, leading to subpar mechanical properties. However, by adding desulfurized gypsum as an admixture, the rich SO42- can react with Ca2+ and active silicate in the geopolymer to form Aft, thereby improving the mechanical properties. In the experiment, desulfurized gypsum is added as an admixture to a fly ash-slag-based geopolymer curing agent, and the resulting solidified soil is investigated through various macroscopic and microscopic tests. These tests include unconfined compressive strength measurements, water stability tests, scanning electron microscopy analyses, and X-ray diffraction tests. The results of these tests are combined with the response surface method to optimize the alkali-solid ratio, the modulus of the alkali activator, and the amount of desulfurized gypsum to 0.6%, 0.809%, and 15.96%, respectively. On this basis, an optimal mixing ratio was proposed and applied to form a geopolymer-solidified soil. The compressive strength and microstructure of this soil were then investigated using the single-variable method. An unconsolidated undrained triaxial test was performed on geopolymer-solidified soils of different curing times to investigate their shear performance. The water stability test was carried out to explore the influence of soaking time on the strength of solidified soil. Through microscopic observation, it was found that the fly ash-slag-based geopolymer generated significant amounts of (N, C)-A-S-H and C-S-H in solidified soil. With the addition of desulfurized gypsum, soil particles become filled with Aft and the solidified soil becomes more brittle instead of plastic, resulting in a significant increase in compressive strength. In addition, the cohesion and internal friction angle increase with curing time. With the increase of soaking time, the softening effect of long-term water soaking reduced the strength of the solidified soil.

期刊论文 2025-06-01 DOI: 10.1061/IJGNAI.GMENG-10794 ISSN: 1532-3641

This study investigates the stabilization of lateritic soil through partial replacement of cement with flue gas desulfurization (FGD) gypsum, aiming to enhance its engineering properties for pavement subgrade applications. Lateritic soils are known for their high plasticity and low strength, which limit their utility in infrastructure. To address these challenges, soil specimens were treated with varying cement contents (3%, 6%, 9%) and FGD gypsum additions (1%-6%). Laboratory tests were conducted to evaluate plasticity, compaction, permeability, unconfined compressive strength (UCS), California Bearing Ratio (CBR), and fatigue behaviour. The optimal mix 6% cement with 3% FGD gypsum demonstrated significant improvements: UCS increased by over 110% after 28 days, permeability reduced by 26%, and soaked CBR improved by 56% compared to untreated soil. Additionally, fatigue life showed remarkable enhancement under cyclic loading, indicating increased durability for high-traffic applications. To support predictive insights, machine learning models including Decision Tree, Random Forest, and Multi-Layer Perceptron (MLP) were trained on 168 data samples. The MLP and Random Forest models achieved high prediction accuracy (R2 approximate to 0.98), effectively capturing the non-linear interactions between mix proportions and UCS. SHAP (SHapley Additive exPlanations) analysis identified curing duration as the most influential factor affecting strength development. This integrated experimental-computational approach not only validates the feasibility of using FGD gypsum in sustainable soil stabilization but also demonstrates the effectiveness of machine learning in predicting key geotechnical parameters, reducing reliance on extensive laboratory testing and promoting data-driven pavement design.

期刊论文 2025-06-01 DOI: 10.1088/2053-1591/adde2f

Red mud (RM) is a strongly alkaline waste residue produced during alumina production, and its high alkali and fine particle characteristics are prone to cause soil, water, and air pollution. Phosphogypsum (PG), as a by-product of the wet process phosphoric acid industry, poses a significant risk of fluorine leaching and threatens the ecological environment and human health due to its high fluorine content and strong acidic properties. In this study, RM-based cemented paste backfill (RCPB) based on the synergistic curing of PG and ordinary Portland cement (OPC) was proposed, aiming to achieve a synergistic enhancement of the material's mechanical properties and fluorine fixation efficacy by optimizing the slurry concentration (63-69%). Experimental results demonstrated that increasing slurry concentration significantly improved unconfined compressive strength (UCS). The 67% concentration group achieved a UCS of 3.60 MPa after 28 days, while the 63%, 65%, and 69% groups reached 2.50 MPa, 3.20 MPa, and 3.40 MPa, respectively. Fluoride leaching concentrations for all groups were below the Class I groundwater standard (<= 1.0 mg/L), with the 67% concentration exhibiting the lowest leaching value (0.6076 mg/L). The dual immobilization mechanism of fluoride ions was revealed by XRD, TGA, and SEM-EDS characterization: (1) Ca2(+) and F- to generate CaF2 precipitation; (2) hydration products (C-S-H gel and calixarenes) immobilized F- by physical adsorption and chemical bonding, where the alkaline component of the RM (Na2O) further promotes the formation of sodium hexafluoroaluminate (Na3AlF6) precipitation. The system pH stabilized at 9.0 +/- 0.3 after 28 days, mitigating alkalinity risks. High slurry concentrations (67-69%) reduced material porosity by 40-60%, enhancing mechanical performance. It was confirmed that the synergistic effect of RM and PG in the RCPB system could effectively neutralize the alkaline environment and optimize the hydration environment, and, at the same time, form CaF2 as well as complexes encapsulating and adsorbing fluoride ions, thus significantly reducing the risk of fluorine migration. The aim is to improve the mechanical properties of materials and the fluorine-fixing efficiency by optimizing the slurry concentration (63-69%). The results provide a theoretical basis for the efficient resource utilization of PG and RM and open up a new way for the development of environmentally friendly building materials.

期刊论文 2025-05-27 DOI: 10.3390/app15116041

The problem of chemical soil pollution after military actions on the territory of Ukraine is becoming quite urgent in terms of ecological risks. The aim of the article was to establish the level of ecological safety of soils after the application of biosorption technology and to substantiate its ecological and economic feasibility. Within the scope of the study, three scenarios were set to evaluate the level of ecological risk under the condition of actual complex contamination of soils with five heavy metals (Zn, Cu, Ni, Pb, and Cd) - Scenario 1 and in the case of biosorption technology application for soil protection - Scenarios 2 and 3. Scenarios 2 and 3 differed in the type of substrate for anaerobic digestion (chicken manure and sewage sludge, respectively) compatible with phosphogypsum to obtain a biocomposite. Innovative approach for ecological risk assessment was improved based on the Bayes' theorem and developed set of qualitative and quantitative parameters. Based on the theoretical substantiation of the complex formation indicator and the fluorescent properties of digestate organic matter, the efficiency of heavy metal immobilisation in the soil was evaluated, which contributed to the reduction of ecological risk from moderate to low level for both scenarios. The results of the risk assessment based on Bayes' theorem showed a decrease in the level of risk from high to medium. Ecological and economic efficiency was assessed according to methodology of ecological damage after hostilities. The economically effective technology developed can be recommended for the comprehensive soil restoration scheme due to the obtained results.

期刊论文 2025-05-01 DOI: 10.1016/j.hazadv.2025.100677 ISSN: 2772-4166

To enhance the applicability of multiple solid waste road base materials in seasonally frozen soil areas and reduce the negative impact of red mud (RM) on the environment owing to its strong alkalinity, this paper utilizes untreated bayer method RM, fly ash (FA), and phosphogypsum (PG) as raw materials for preparing the road base materials. The mechanical properties, leaching characteristics, and Freeze-thaw (F-T) resistance of the materials from different solid waste systems were investigated through F-T cycle tests, unconfined compressive strength (UCS) tests, and leaching tests. The hydration, sodium solidification, and F-T deterioration mechanisms were revealed using an X-ray diffractometer and a scanning electron microscope. Results indicated that when the mix ratio of RM: FA: PG: cement was 64:28:2:6 (RFP2), the specimen exhibited the best F-T resistance. After 10 F-T cycles, the compressive strength retention rate (BDR) of the specimen was 91.43 %, and the Na+ leaching concentration was 390 mg/L, which still met the Chinese standard. The main hydration products of the material include C-S-H gel and ettringite crystals. These crystals and gels are intertwined and connected to form a dense mesh structure, which improves the material's F-T resistance and sodium solidification effect. The F-T cycle results in the expansion of cracks within the material, which leads to the destruction of the adhesion of the cementitious products, thus causing a deterioration of the strength of the specimen and the reduction of the sodium solidification effect.

期刊论文 2025-05-01 DOI: 10.1016/j.coldregions.2025.104448 ISSN: 0165-232X

Phosphogypsum (PG), phosphate sludge (PS), and sewage sludge (SS) are regarded by-products produced in huge amounts. However, PG, PS and SS are no longer considered as waste, but as valued resources in accordance with the circular economy's rules. Their management provides a serious environmental problem. In order to assess the impacts of SS, PS, and PG on soil physico-chemical parameters (pH, EC, OM, nutrients, and heavy metals) in response to diverse experimental settings, the purpose of the current study was to conduct a meta-analysis on previously published results. The VOSviewer program was used to construct bibliometric maps using the VOS mapping and grouping techniques. The findings indicated that there were statistically significant changes (P < 0.05) in electrical conductivity (EC), organic matter (OM), and pH in connection to the different by-products employed. The application of SS considerably elevated pH by 46.15% compared to the control. Furthermore, a beneficial effect on P and K was detected, regardless of the by-product used. Moreover, Cd, Pb, and Ni concentrations in SS treatments had a substantial reduction of 30.46%, 30.70%, and 18.07%, respectively. Cd, Pb, and Cu concentrations in PG treatments revealed a substantial decrease of 47.71%, 36.14%, and 46.01%, respectively. Based on the acquired data, PG, PS, and SS need to be regularly monitored and regulated. This study serves as an early investigation for the construction of a new approach to restore damaged land on mine sites by employing phosphate industry by-products and sludge for revegetation objectives.

期刊论文 2025-02-26 DOI: 10.3389/fenvs.2025.1509156
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共45条,5页