In this study, we evaluated the variations of air quality in Lanzhou, a typical city in Northwestern China impacted by the COVID-19 lockdown. The mass concentration and chemical composition of non-refractory submicron particulate matter (NR-PM1) were determined by a high-resolution aerosol mass spectrometer during January-March 2020. The concentration of NR-PM(1)dropped by 50% from before to during control period. The five aerosol components (sulfate, nitrate, ammonium, chloride, and organic aerosol [OA]) all decreased during the control period with the biggest decrease observed for secondary inorganic species (70% of the total reduction). Though the mass concentration of OA decreased during the control period, its source emissions varied differently. OA from coal and biomass burning remained stable from before to during control period, while traffic and cooking related emissions were reduced by 25% and 50%, respectively. The low concentration during the control period was attributed to the lower production rate for secondary aerosols.
Recent studies have revealed the abundance of dissolved organic matter (DOM) in snow/glaciers of the Tibetan Plateau (TP). Here, we present a comprehensive study on the chemical compositions of snowpit samples collected from widely distributed eight glaciers in the western China (six from the TP) to investigate the spatial variation of deposited atmospheric aerosols. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to chemically characterize the DOM in snow samples which can offer chemical properties of DOM. Highest mass concentration of dissolved species mass was observed in Tienshan Baishui No 1 glacier (TS, 6.55 +/- 0.85 mg/L) close to Takalamagan Desert, whereas lowest (0.89 +/- 0.18 mg/L) was observed in Zadang Glacier (ZD) in the central TP. DOM (8-40%) and calcium as well as magnesium (9-67%) were generally the most abundant chemical species. Average DOM concentration in the TP glaciers among the investigated sites were comparable. DOM was found highly oxidized with an oxygen to carbon ratio (O/C ratio) ranging from 0.82 to 1.03. Highly oxidized DOM could have related with aerosol aqueous processes as illustrated by observed organic acids. This study provides insights into the spatial variations of the DOM and dissolved inorganic matter, as well as oxidized organic aerosol, were most likely due to local and regional contribution. (C) 2019 Elsevier B.V. All rights reserved.