This study reports day-night and seasonal variations of aqueous brown carbon (BrCaq) and constituent humic-like substances (HULIS) (neutral and acidic HULIS: HULIS-n and HULIS-a) from the eastern Indo-Gangetic Plain (IGP) of India during 2019-2020. This is followed by the application of the receptor model positive matrix factorization (PMF) for optical source apportionment of BrCaq and the use of stable isotopic ratios (813C and 815N) to understand atmospheric processing. Nighttime BrCaq absorption and mass absorption efficiencies (MAE) were enhanced by 40-150 % and 50-190 %, respectively, compared to the daytime across seasons, possibly as a combined effect from daytime photobleaching, dark-phase secondary formation, and increased nighttime emissions. MAE250 nm/MAE365 nm (i.e., E2/E3) ratios and Angstrom Exponents revealed that BrCaq and HULIS-n were relatively more aromatic and conjugated during the biomass burning-dominated periods while BrCaq and HULIS-a were comprised mostly of nonconjugated aliphatic structures from secondary processes during the photochemistry-dominated summer. The relative radiative forcing of BrCaq with respect to elemental carbon (EC) was 10-12 % in the post-monsoon and winter in the 300-400 nm range. Optical source apportionment using PMF revealed that BrCaq absorption at 300, 365 and 420 nm wavelengths in the eastern IGP is mostly from biomass burning (60-75 %), followed by combined marine and fossil fuel-derived sources (24-31 %), and secondary processes (up to 10 %). Source-specific MAEs at 365 nm were estimated to be the highest for the combined marine and fossil fuel source (1.34 m2 g-1) followed by biomass burning (0.78 m2 g-1) and secondary processing (0.13 m2 g-1). Finally, 813C and 815N isotopic analysis confirmed the importance of summertime photochemistry and wintertime NO3--dominated chemistry in constraining BrC characteristics. Overall, the quantitative apportionment of BrCaq sources and processing reported here can be expected to lead to targeted source-specific measurements and a better understanding of BrC climate forcing in the future.
Aerosols generated from aqueous samples of readily obtainable humic material standards are often used as proxies for organic particulates found in the atmosphere in various investigations, such as consideration of radiative forcing effects. Here, we present results for the retrieved complex index of refraction, m = n + ik, at a wavelength of 403 nm for aerosols prepared from six humic material standards using a calibrated cavity ring-down spectrometer: a humic acid sodium salt, Pahokee peat humic and fulvic acids, Elliott soil humic and fulvic acids, and Suwannee river fulvic acid. In addition, we have conducted UV-vis spectrometric studies to measure the mass absorption coefficients, molar absorptivities, and absorption Angstrom exponents of bulk aqueous solutions of the humic materials. We find clear differences between the humic acid (HA) and fulvic acid (FA) samples with the HA having larger values for the imaginary part of the refractive index, k. The mean value for the HA samples is k = 0.170 while the mean is k = 0.037 for the FA materials. We have examined correlations between the retrieved refractive index and humic material characteristics obtained from spectroscopic and elemental analysis, including aromatic content and the oxygen-to-carbon atomic ratio, where the molar absorption coefficient yields the strongest correlation. Finally, we compare the humic material optical properties to those of authentic and laboratory generated organic carbon samples in order to assess the usefulness of these humic standards as proxies for light absorbing aerosol.
In this study, the sensitivity of the optical properties of carbonaceous aerosols, especially humic-like substances (HULIS), are investigated based on a one-year measurement of ambient fine atmospheric particulate matter (PM2.5) at a Global Atmospheric Watch (GAW) station in South Korea. The extinction, absorption coefficient, and radiative forcing (RF) are calculated from the analysis data of water soluble (WSOC) and insoluble (WISOC) organic aerosols, elemental carbon (EC), and HULIS. The sensitivity of the optical properties on the variations of refractive index, hygroscopicity, and light absorption properties of HULIS as well as the polydispersity of organic aerosols are studied. The results showed that the seasonal absorption coefficient of HULIS varied from 0.09 to 11.64 Mm(-1) and EC varied from 0.11 to 3.04 Mm(-1) if the geometric mean diameter varied from 0.1 to 1.0 mu m and the geometric standard deviation varied from 1.1 to 2.0, with the imaginary refractive index (IRI) of HULIS varying from 0.006 to 0.3. Subsequently, this study shows that the RF of HULIS was larger than other constituents, which suggested that HULIS contributed significantly to radiative forcing.