Losses in agricultural produce have significant social, economic, and environmental implications. Despite efforts to increase yields, inadequate pre-and post-harvest practices often lead to losses and threaten food security. These losses also waste crucial resources like water, soil, and energy utilized in crop production. Minimizing agricultural produce losses is more crucial and cost-effective than simply increasing production. Understanding the factors that influence losses, the locations where they occur, and the types of losses that take place is key to developing effective control strategies. Specialized research and analysis are necessary for this purpose. Raising public awareness about the causes and prevention of agricultural produce losses is crucial. The review aimed to understand losses in agricultural produce emphasize the importance of efficient management strategies and seek improved solutions to reduce losses across the supply chain. The review is anticipated to provide valuable insights into the complex nature of agricultural produce losses and their impact on food security. The review focused on the losses in agricultural produce by looking at the different types of losses, their causes, and when they occur in the production process. It also evaluated the necessary services and infrastructure to reduce these losses at various stages. Additionally, the review highlighted the social and economic benefits of minimizing agricultural losses, including enhanced food security, decreased financial losses, and the promotion of a more sustainable agricultural system.
Background: The interference caused by volunteer soybean plants from grains lost before or during harvest can cause economic losses to bean producers due to the competition they cause, especially for succeeding crops. Objective: Therefore, the objective of this work was to determine the competitive ability and economic damage level (EDL) of bean cultivars in the presence of different densities of soybean volunteer plants. Methods: The experiments were installed in completely randomized design, and replicated for two consecutive years, 2020/21 and 2021/22. Treatments consisted of the carioca bean cultivars BRS Tangar & aacute;, IAC 1850, and BRS Estilo and the black type IPR Uirapuru, IPR Urutau, and BRS Esteio, and 12 volunteer soybean densities established for each cultivar, ranging from 0 to a maximum of 66 plants m-2.-2 . Plant density, soil cover, leaf area, and shoot dry matter of volunteer soybean plants were determined 40 days after emergence. For bean, productivity, control cost, selling price, and control efficacy were determined. Results: Bean cultivars IPR Tangar & aacute;, BRS Estilo, IPR Uirapuru and BRS Esteio showed greater competitive ability in the presence of soybean. The highest EDL values ranged from 1.00 to 2.89 plants m-2 for BRS Estilo, IPR Uirapuru, IPR Urutau and BRS Esteio cultivars when competing with soybean. Conclusions: Bean cultivars have different competitive abilities, and EDL is directly influenced by these different genetic traits.