Background and aimsA better understanding of plant carbon assimilation, water status and photosystem performance responses to combined heat and drought stress would help to optimize grapevine management under such limiting conditions.MethodsGas exchange and chlorophyll fluorescence parameters were measured in potted grapevines, cv Sauvignon Blanc, before, during and after simulated six-day heat (Tmax = 40 degrees C) wave using heated well-watered (HW), heated drought-stressed (HD), non-heated well-watered (CW) and non-heated dry (CD) vines.ResultsPhotosynthesis and stomatal conductance in HW vines increased during the morning and dropped in the afternoon with respect to CW vines. Daily plant transpiration in HW almost doubled that of CW vines. When grapevines were already exposed to drought, the effects of the heat wave were negligible, with HD plants showing similar leaf photosynthesis and transpiration to their CD counterparts. Heat, but not drought stress, decreased the maximum (Fv/Fm) and effective photochemical quantum yield of PSII (phi PSII), and also affected the use of absorbed energy. HW plants dissipated more radiative energy as heat, a protective mechanism of the photosystem, while HD vines increased the energy dissipated by non-regulated non-photochemical pathways, which might lead to photoinhibition damages. The different behavior could be due to the enhanced transpiration rate and consequent decrease in leaf temperature in HW as compared to HD vines. After the heat wave, only HW vines recovered the afternoon values of photosynthesis, stomatal conductance and phi PSII to similar levels as those in CW vines.ConclusionDrought had a more significant effect than heat stress on photosynthesis, stomatal conductance and transpiration. The combined heat and drought stress, however, increased the proportion of energy lost by the leaves through harmful non-regulated dissipative pathways. With adequate soil water availability, grapevines withstood the heat wave period through an increase in leaf transpiration, which decreased leaf temperature and protected the PSII from heat damage. Drought had a stronger impact on gas exchange parameters than elevated temperature during a simulated heatwave, while heat stress was the main driver of PSII functionality and absorbed energy partitioning. Well-watered grapevines were able to recover their physiological function after a six-day heatwave (Tmax 40 degrees C), while plants under heat and drought stress were unable to resume PSII performance after one day of recovery.
The Eurasian continent has experienced significant year-to-year variations of summer heat waves during the past decades. Several possible factors, such as ocean temperature, soil moisture, and changes in land use and greenhouse gases, have been identified in previous studies, but the mechanisms are still unclear. In this study, it is found that the Tibetan Plateau snow cover (TPSC) is closely linked to the interannual variations of summer heat waves over Eurasia. The TPSC variability explains more than 30 % of the total variances of heat wave variability in the southern Europe and northeastern Asia (SENA) region. A set of numerical experiments reveal that the reduced TPSC may induce a distinct teleconnection pattern across the Eurasian continent, with two anomalous high pressure centers in the upper troposphere over the SENA region, which may lead to a reduction of the cloud formation near the surface. The less cloud cover tends to increase the net shortwave radiation and favor a stronger surface sensible heat flux in the dry surface condition over the SENA region, resulting in a deeper, warmer and drier atmospheric boundary layer that would further inhibit the local cloud formation. Such a positive land-atmosphere feedback may dry the surface even further, heat the near-surface atmosphere and thereby intensify the local heat waves. The above dynamical processes also operate on interdecadal time scales. Given the reduction of the TPSC could become more pronounced with increasing levels of greenhouse gases in a warming climate, we infer that the TPSC may play an increasingly important role in shaping the summer heat waves over the SENA region in next decades.
Uncertainties in the climate response to a doubling of atmospheric CO2 concentrations are quantified in a perturbed land surface parameter experiment. The ensemble of 108 members is constructed by systematically perturbing five poorly constrained land surface parameters of global climate model individually and in all possible combinations. The land surface parameters induce small uncertainties at global scale, substantial uncertainties at regional and seasonal scale and very large uncertainties in the tails of the distribution, the climate extremes. Climate sensitivity varies across the ensemble mainly due to the perturbation of the snow albedo parameterization, which controls the snow albedo feedback strength. The uncertainty range in the global response is small relative to perturbed physics experiments focusing on atmospheric parameters. However, land surface parameters are revealed to control the response not only of the mean but also of the variability of temperature. Major uncertainties are identified in the response of climate extremes to a doubling of CO2. During winter the response both of temperature mean and daily variability relates to fractional snow cover. Cold extremes over high latitudes warm disproportionately in ensemble members with strong snow albedo feedback and large snow cover reduction. Reduced snow cover leads to more winter warming and stronger variability decrease. As a result uncertainties in mean and variability response line up, with some members showing weak and others very strong warming of the cold tail of the distribution, depending on the snow albedo parametrization. The uncertainty across the ensemble regionally exceeds the CMIP3 multi-model range. Regarding summer hot extremes, the uncertainties are larger than for mean summer warming but smaller than in multi-model experiments. The summer precipitation response to a doubling of CO2 is not robust over many regions. Land surface parameter perturbations and natural variability alter the sign of the response even over subtropical regions.