Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.
E-waste-the aftermath of large amount of electrical and electronic equipment ferried into Africa from which Nigeria receives a significant chunk, is composed of components known to be hazardous to health. Composition of series of heavy metals (HMs) in e-waste is traceable to many health conditions including cancer which is hitherto incompletely understood. This study harmonizes primary data on HMs from e-waste in different Nigerian environmental media including the air, soil, surface dust, water and plant. We estimated the possible health implications, single and aggregative soil and water pollution indices both in adult and children categories, carcinogenic and non-carcinogenic risks secondary to HM exposure and mapped out the possible mechanism of carcinogenesis. Analysis showed that s oil, water, surface dust and plant matrices in Nigerian environment are variedly but considerably contaminated with combination of HMs. The significantly high values of the hazard quotient and hazard index of both water and surface dust matrices are indicative of adverse health effect of the non-carcinogenic risk. The highest HQ is generated by Pb and Cr through dermal exposure to soil and surface dust with mean values of 1718.48, 1146.14, 1362.10 and 1794.61 respectively among Nigerian children followed by the oral exposure. This pattern of observation is similar to that obtained for adult category. HI due to Pb and Cr in soil constitutes the highest HI (2.05E+03 +03 and 1.18E+03 +03 respectively) followed by surface dust. However, this study precipitates the observation that children are more at health risk than adults in contaminated environment. Carcinogenic risk also follows the same pattern of expression in the Nigerian environment. We conclude that exposure to e-waste poses significant carcinogenic and non-carcinogenic health risks and the induction of toxicity may be mediated via DNA damage, oxidative stress and inflammatory/immune cells dysfunction in Nigerian environment.