On the Tibetan Plateau, climate change, particularly increases in air temperature, significantly affects cryospheric and hydrological processes. Based on 5 typical future climate scenarios from the Coupled Model Intercomparison Project (CMIP5) under emission scenario RCP4.5 and a distributed ecohydrological model (GBEHM), this study analyzes the potential characteristics of future climate change (from 2011 to 2060) and the associated effects on the cryospheric and hydrological processes in the upper Heihe River Basin, a typical cold mountain region located on the northeastern Tibetan Plateau. The precipitation, air temperature, and frozen ground elasticities of runoff/evapotranspiration are then estimated based on the simulation results. The typical future climate scenarios suggest that air temperature will increase at an average rate of 0.34 degrees C/10a in the future and that precipitation will increase slightly by 6 mm/10a under the RCP 4.5 emission scenario. Based on the GBEHM-simulated results, due to the increase in air temperature, glaciers would be reduced to less than 100 million m(3) by 2060, the permafrost area would shrink by 23%, the maximum frozen depth of seasonally frozen ground would decrease by 5.4 cm/10a and the active layer depth of the frozen ground would increase by 6.1 cm/ 10a. Additionally, runoff would decrease by approximately 5 mm/10a, and evapotranspiration would increase by approximately 9 mm/10a. The estimated elasticities indicate that annual runoff would decrease at an average rate of 24 mm/degrees C and evapotranspiration would increase at an average rate of 21 mm/degrees C with rising air temperature in the future. The impacts of increased air temperature on hydrological processes are mainly due to changes in frozen ground. The thickening of the active layer of the frozen ground increases the soil storage capacity, leading to decreased runoff and increased evapotranspiration. When the active layer depth increases by 1 cm, annual runoff decreases by approximately 1.3 mm, and annual evapotranspiration increases by approximately 0.9 mm. In addition, the shift from permafrost to seasonal frozen ground increases groundwater infiltration, which decreases surface runoff. Compared to that over the past 50 years, the effect of increased air temperature on the frozen ground in the upper Heihe River Basin will be greater in the future, which would result in a faster reduction in runoff in the future considering the effects of global warming.
To investigate the thermal characteristics and dynamics of permafrost as well as seasonally frozen ground over the upper reaches of the Heihe River Basin (URHR), an observation network with 14 boreholes was established during 2011-2014. The in situ measurements indicated mean annual air temperature that ranged from -5.2 to -2.3 degrees C at the monitored elevation range of approximate to 3,600-4,150m, and mean annual ground surface temperature that ranged from -1.3 to 1.7 degrees C during 2013-2017. The mean annual ground temperature at 16- to 18-m depth ranged from -1.71 degrees C on the high (>4,000 m above sea level) north facing slope to about 0-C around areas near the lower limit of permafrost. Active layer thickness at the monitored sites varied significantly with the range of 0.77-4.90m during 2011-2017, and maximum frozen depth in seasonally frozen ground was about 5m. Permafrost thickness was between approximate to 136m and less than 10m. Both permafrost and seasonally frozen ground were found to be subject to serious warming during the measured period in the URHR. This study provides new quantitative insights for permafrost and seasonally frozen ground in the URHR. Key Points
Soil thermal and hydraulic regimes are critical factors influencing terrestrial processes in cold regions. Collection of field data from frozen ground has occurred at point scales, but limited data exist that characterize changes of soil thermal and hydraulic regimes at the scale of the whole Heihe River Basin. This study uses a long-term regional climate model coupled with land surface model to investigate the soil thermal and hydraulic regime changes at a large spatial scale. It also explores potential factors, including the climate and non-climate factors. Results show that there is significant variability in mean annual air temperature (MAAT) of about 0.47 degrees C/decade during 1980-2013. A time series of area-averaged mean annual soil temperature (MAST) over the whole Heihe River Basin shows a significant increase between 0.25 and 0.36 degrees C/decade during 1984-2013, with a net change of 0.9 degrees C. A trend of increasing wetness is found in soil moisture. Frozen days (FD) decreased significantly both in seasonally frozen ground (SFG) regions and permafrost regions, with a net change between 7 and 13 days during 1984-2013. Freezing index (FI) had a positive effect on FD, while thawing index (TI), MAAT, precipitation, and normalized difference vegetation index (NDVI) had a negative effect. These results are important to understand dynamic mechanisms of soil freeze/thaw cycles.