共检索到 13

Knowledge of the paleoclimatic record of the northeastern Tibetan Plateau (NETP) can potentially improve our understanding of the evolution of the Asian summer monsoon (ASM). However, the history of climate change and inferred spatial extent of the ASM on the NETP since the last deglaciation remain unclear. Here, we use several environmental proxies from the sediments of Hala Lake (beyond the modern limit of ASM), including chironomids, loss-on-ignition, grain size and element data, to explore the climatic history of the NETP and the northern boundary of the ASM since the last deglaciation. The results document a series of climatic events during the deglaciation, including Heinrich Event 1, the Bolling-Allerod interstadial and the Younger Dryas event. The records also reveal the timing of the megathermal and precipitation maximum, the lake-level maximum, and strongest chemical weathering, which occurred during similar to 10-7 ka. The inferred precipitation maximum during the early Holocene in the Hala Lake basin, which can be verified by the simulated precipitation change, is consistent with that in typical Indian summer monsoon (ISM) regions, suggesting that the ISM has penetrated into Hala Lake basin at that time. The monsoon-dominated climate in the Hala Lake basin during the early Holocene and the westerlies-dominated climate in the arid central Asia indicate that the maximum areal extent of the ASM on the NETP since the last deglaciation lay to the northwest of Hala Lake basin. In combination with other published records, the northernmost boundary of the ASM over China since the last deglaciation has been tentatively delineated, to shed some lights on this long-standing debate.

2024-01-20

Increased permafrost temperatures have been reported in the circum-Arctic, and widespread degradation of permafrost peatlands has occurred in recent decades. The timing of permafrost aggradation in these ecosystems could have implications for the soil carbon lability upon thawing, and an increased understanding of the permafrost history is therefore needed to better project future carbon feedbacks. In this study, we have conducted high-resolution plant macrofossil and geochemical analyses and accelerator mass spectrometry radiocarbon dating of active layer cores from four permafrost peatlands in northern Sweden and Norway. In the mid-Holocene, all four sites were wet fens, and at least three of them remained permafrost-free until a shift in vegetation toward bog species was recorded around 800 to 400 cal. BP, suggesting permafrost aggradation during the Little Ice Age. At one site, Karlebotn, the plant macrofossil record also indicated a period of dry bog conditions between 3300 and 2900 cal. BP, followed by a rapid shift toward species growing in waterlogged fens or open pools, suggesting that permafrost possibly was present around 3000 cal. BP but thawed and was replaced by thermokarst.

2023-12-31 Web of Science

Active layer and permafrost are important indicators of climate changes in periglacial areas of Antarctica, and the soil thermal regime of Maritime Antarctica is sensitive to the current warming trend. This research aimed to characterize the active layer thermal regime of a patterned ground located at an upper marine terrace in Half Moon Island, during 2015-2018. Temperature and moisture sensors were installed at different soil depths, combined with air temperature, collecting hourly data. Statistical analysis was applied to describe the soil thermal regime and estimate active layer thickness. The thermal regime of the studied soil was typical of periglacial environment, with high variability in temperature and water content in the summer, resulting in frequent freeze-thaw cycles. We detected dominant freezing conditions, whereas soil temperatures increased, and the period of high soil moisture content lasted longer over the years. Active layer thickness varied between the years, reaching a maximum depth in 2018. Permafrost degradation affects soil drainage and triggers erosion in the upper marine terrace, where permafrost occurrence is unlikely. Longer monitoring periods are necessary for a detailed understanding on how current climatic and geomorphic conditions affect the unstable permafrost of low-lying areas of Antarctica (marine terraces).

2023-01-01 Web of Science

Studies on the responses of soil organic carbon (SOC) and nitrogen dynamics to Holocene climate and environment in permafrost peatlands and/or wetlands might serve as analogues for future scenarios, and they can help predict the fate of the frozen SOC and nitrogen under a warming climate. To date, little is known about these issues on the Qinghai -Tibet Plateau (QTP). Here, we investigated the accumulations of SOC and nitrogen in a permafrost wetland on the northeastern QTP, and analyzed their links with Holocene climatic and environmental changes. In order to do so, we studied grain size, soil organic matter, SOC, and nitrogen contents, bulk density, geochemical parameters, and the accelerator mass spectrometry (AMS) 14C dating of the 216-cm-deep wetland profile. SOC and nitrogen contents revealed a general uptrend over last 7300 years. SOC stocks for depths of 0-100 and 0-200 cm were 50.1 and 79.0 kgC m-2, respectively, and nitrogen stocks for the same depths were 4.3 and 6.6 kgN m-2, respectively. Overall, a cooling and drying trend for regional climate over last 7300 years was inferred from the declining chemical weathering and humidity index. Meanwhile, SOC and nitrogen accumulated rapidly in 1110-720 BP, while apparent accumulation rates of SOC and nitrogen were much lower during the other periods of the last 7300 years. Consequently, we proposed a probable conceptual framework for the concordant development of syngenetic permafrost and SOC and nitrogen accumulations in alpine permafrost wetlands. This indicates that, apart from controls of climate, non-climate environmental factors, such as dust deposition and site hydrology, matter to SOC and nitrogen accumulations in permafrost wetlands. We emphasized that environmental changes driven by climate change have important impacts on SOC and nitrogen accumulations in alpine permafrost wetlands. This study could provide data support for regional and global estimates of SOC and nitrogen pools and for global models on carbon -climate interactions that take into account of alpine permafrost wetlands on the northeastern QTP at mid-latitudes.

2022-04

Climate warming in high-latitude regions is thawing carbon-rich permafrost soils, which can release carbon to the atmosphere and enhance climate warming. Using a coupled model of long-term peatland dynamics (Holocene Peat Model, HPM-Arctic), we quantify the potential loss of carbon with future climate warming for six sites with differing climates and permafrost histories in Northwestern Canada. We compared the net carbon balance at 2100 CE resulting from new productivity and the decomposition of active layer and newly thawed permafrost peats under RCP8.5 as a high-end constraint. Modeled net carbon losses ranged from -3.0 kg C m(-2) (net loss) to +0.1 kg C m(-2) (net gain) between 2015 and 2100. Losses of newly thawed permafrost peat comprised 0.2%-25% (median: 1.6%) of old C loss, which were related to the residence time of peat in the active layer before being incorporated into the permafrost, peat temperature, and presence of permafrost. The largest C loss was from the permafrost-free site, not from permafrost sites. C losses were greatest from depths of 0.2-1.0 m. New C added to the profile through net primary productivity between 2015 and 2100 offset similar to 40% to >100% of old C losses across the sites. Differences between modeled active layer deepening and flooding following permafrost thaw resulted in very small differences in net C loss by 2100, illustrating the important role of present-day conditions and permafrost aggradation history in controlling net C loss.

2021-05-01 Web of Science

The observed global warming has significant impacts on permafrost. Permafrost changes modify landscapes and cause damage to infrastructure. The main purpose of this study was to estimate permafrost temperatures and active-layer thicknesses during the Holocene intervals with significantly warmer-than-present climates-the Atlantic (5500 years BP), Subboreal (3500 years BP) and Subatlantic (1000 years BP) optimums. Estimates were obtained using the ready-to-use models derived by G.M. Feldman, as well as mathematical modeling taking account of the paleogeography of the Holocene warm intervals. The data obtained were analyzed to reveal the regional patterns of warming impacts on different permafrost landscapes. The study results will be useful in predicting future permafrost changes in response to climate warming.

2020-11-01 Web of Science

Thermokarst lakes form following the thaw of ice-rich permafrost and drain after a few decades to millennia. Drained thermokarst lake basins (DTLBs) become epicenters for peat accumulation and re-aggradation of ice-rich permafrost. This re-aggradation of permafrost may be interrupted by subsequent thermokarst lake formation with sufficient disturbance. Thermokarst lakes and DTLBs are abundant near Old Crow, Yukon, Canada, but little is known about their evolution through the Holocene. In this study, we investigate the hydrology and drainage histories of seven DTLBs from the Old Crow Flats on the basis of cryostratigraphy, radiocarbon dating, and pore-ice delta O-18 and delta H-2 records. Cryostratigraphic evidence implies only one of the seven studied DTLBs underwent multiple thermokarst cycles. Radiocarbon age-depth models demonstrate a slowdown in the rate of post-drainage peat accumulation with time. Pore-ice isotope analyses reveal a spectrum of possible post-drainage isotopic histories resulting from spatial variability in permafrost, vegetation, and hydrology. Unlike lacustrine silt, post-drainage peat contains relatively constant pore-ice isotope trends. In light of our findings, we propose that syngenetic peat permafrost in DTLBs preserve a warm-season sampling of local meteoric waters. These pore-ice delta O-18 and delta H-2 records may aid millennial-scale paleoclimate investigations, as we demonstrate through our reconstruction of Holocene climate change in northern Yukon.

2020-10-01 Web of Science

Issue Despite their rather similar climatic conditions, eastern Eurasia and northern North America are largely covered by different plant functional types (deciduous or evergreen boreal forest) composed of larch or pine, spruce and fir, respectively. I propose that these deciduous and evergreen boreal forests represent alternative quasi-stable states, triggered by their different northern tree refugia that reflect the different environmental conditions experienced during the Last Glacial. Evidence This view is supported by palaeoecological and environmental evidence. Once established, Asian larch forests are likely to have stabilized through a complex vegetation-fire-permafrost soil-climate feedback system. Conclusion With respect to future forest developments, this implies that Asian larch forests are likely to be governed by long-term trajectories and are therefore largely resistant to natural climate variability on time-scales shorter than millennia. The effects of regional human impact and anthropogenic global warming might, however, cause certain stability thresholds to be crossed, meaning that irreversible transitions occur and resulting in marked consequences for ecosystem services on these human-relevant time-scales.

2020-02-01 Web of Science

Aim We aim to use species attributes such as distributions and indicator values to reconstruct past biomes, environment, and temperatures from detailed plant-macrofossil data covering the late glacial to the early Holocene (ca. 14-9 ka). Location Krakenes, western Norway. Methods We applied attributes for present-day geographical distribution, optimal July and January temperatures, and Ellenberg indicator values for plants in the macrofossil data-set. We used assemblage weighted means (AWM) to reconstruct past biomes, changes in light (L), nitrogen (N), moisture (F), and soil reaction (R), and temperatures. We compared the temperature reconstructions with previous chironomid-inferred temperatures. Results After the start of the Holocene around 11.5 ka, the Arctic-montane biome, which was stable during the late-glacial period, shifted successively into the Boreo-arctic montane, Wide-boreal, Boreo-montane, Boreo-temperate, and Wide-temperate biomes by ca. 9.0 ka. Circumpolar and Eurasian floristic elements characteristic of the late-glacial decreased and the Eurosiberian element became prominent. Light demand (L), soil moisture (F), nitrogen (N), and soil reaction (R) show different, but complementary responses. Light-demanding plants decreased with time. Soil moisture was relatively stable until it increased during organic soil development during the early Holocene. Soil nitrogen increased during the early Holocene. Soil reaction (pH) decreased during the Allerod, but increased during the Younger Dryas. It decreased markedly after the start of the Holocene, reaching low but stable levels in the early Holocene. Mean July and January temperatures show similar patterns to the chironomid-inferred mean July temperature trends at Krakenes, but chironomids show larger fluctuations and interesting differences in timing. Conclusion Assigning attributes to macrofossil species is a useful new approach in palaeoecology. It can demonstrate changes in biomes, ecological conditions, and temperatures. The late-glacial to early-Holocene transition may form an analogue for changes observed in the modern arctic and in mountains, with melting glaciers, permafrost thaw, and shrub encroachment into tundra.

2019-11-01 Web of Science

Heterogeneous Holocene climate evolutions in the Northern Hemisphere high latitudes are primarily determined by orbital-scale insolation variations and melting ice sheets. Previous inter-model comparisons have revealed that multi-simulation consistencies vary spatially. We, therefore, compared multiple model results with proxy-based reconstructions in Fennoscandia, Greenland, north Canada, Alaska and Siberia. Our model-data comparisons reveal that data and models generally agree in Fennoscandia, Greenland and Canada, with the early-Holocene warming and subsequent gradual decrease to 0 ka BP (hereinafter referred as ka). In Fennoscandia, simulations and pollen data suggest a 2 degrees C warming by 8 ka, but this is less expressed in chironomid data. In Canada, a strong early-Holocene warming is suggested by both the simulations and pollen results. In Greenland, the magnitude of early-Holocene warming ranges from 6 degrees C in simulations to 8 degrees C in delta O-18-based temperatures. Simulated and reconstructed temperatures are mismatched in Alaska. Pollen data suggest strong early Holocene warming, while the simulations indicate constant Holocene cooling, and chironomid data show a stable trend. Meanwhile, a high frequency of Alaskan peatland initiation before 9 ka can reflect a either high temperature, high soil moisture or large seasonality. In high-latitude Siberia, although simulations and proxy data depict high Holocene temperatures, these signals are noisy owing to a large spread in the simulations and between pollen and chironomid results. On the whole, the Holocene climate evolutions in most regions (Fennoscandia, Greenland and Canada) are well established and understood, but important questions regarding the Holocene temperature trend and mechanisms remain for Alaska and Siberia. (C) 2017 Elsevier Ltd. All rights reserved.

2017-10-01 Web of Science
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共13条,2页