共检索到 2

In cold regions, the frozen soil-rock mixture (FSRM) is subjected to cyclic loading coupled with freeze-thaw cycles due to seismic loading and ambient temperature changes. In this study, in order to investigate the dynamic mechanical response of FSRM, a series of cyclic cryo-triaxial tests were performed at a temperature of -10 degrees C on FRSM with different coarse-grained contents under different loading conditions after freeze-thaw cycles. The experimental results show that the coarse-grained contents and freeze-thaw cycles have a significant influence on the deformation properties of FSRM under cyclic loading. Correspondingly, a novel binary-medium-based multiscale constitutive model is firstly proposed to describe the dynamic elastoplastic deformation of FSRM based on the coupling theoretical framework of breakage mechanics for geomaterials and homogenization theory. Considering the multiscale heterogeneities, ice-cementation differences, and the breakage process of FSRM under external loading, the relationship between the microscale compositions, the mesoscale deformation mechanism (including cementation breakage and frictional sliding), and the macroscopic mechanical response of the frozen soil is first established by two steps of homogenization on the proposed model. Meanwhile, a mixed hardening rule that combines the isotropic hardening rule and kinematic hardening is employed to properly evaluate the cyclic plastic behavior of FSRM. Finally, comparisons between the predicted results and experimental results show that the proposed multiscale model can simultaneously capture the main feature of stress-strain (nonlinearity, hysteresis, and plastic strain accumulation) and volumetric strain (contraction and dilatancy) of the studied material under cyclic loading.

期刊论文 2023-02-01 DOI: http://dx.doi.org/10.1007/s11440-024-02480-z ISSN: 1861-1125

Background: As the largest low-latitude permafrost region, the Tibetan Plateau (TP) is an important part of the earth's terrestrial ecosystem and one of the most vulnerable areas to climate change and human activities. However, to the best of our knowledge, the bacterial communities in TP soils and their roles in biogeochemical cycles remain limited. Results: In this study, we report the bacterial community structure and function as well as their correlation with environmental factors in TP major ecosystems (farmland, alpine meadow and oligosaline lake) by using metagenomic approaches. Compared with other soil samples in various environments, TP soils share a core set of microorganisms with a distinct abundance and composition. Among TP soil samples, the taxonomic and functional composition of bacterial communities among the upper (3-5 cm) and lower (18-20 cm) soils of farmland sites were highly similar, whereas the dissimilarities within alpine meadow samples were significantly greater than among farmland samples. A similar pattern was observed in elements cycles and pathways associated with adaption to environment and land use types. Canonical correlation analysis revealed that the bacterial communities in most of farmland and alpine meadow soil samples were also significantly correlated with geogenic variables. Specifically, the root-nodule bacteria are negatively correlated with the soil moisture and pH, while Thiobacillus associated with sulfur cycles show potential responses to low temperature and intense UV radiation. Conclusions: These findings indicate that the bacterial community structure and functions in TP soils were influenced by both human activities and soil environmental properties, and that the bacterial communities appeared to be more homogenized in the farmland soils compared with pristine alpine meadows.

期刊论文 2013-11-22 DOI: 10.1186/1471-2164-14-820 ISSN: 1471-2164
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页