共检索到 2

Air temperatures are rising and the winter snowpack is getting thinner in many high-latitude and high-elevation ecosystems around the globe. Past studies show that soil warming accelerates microbial metabolism and stimulates soil carbon (C) and nitrogen (N) cycling. Conversely, winter snow removal to simulate loss of snow cover leads to increased soil freezing and reductions in soil microbial biomass, exoenzyme activity, and N cycling. The Climate Change Across Seasons Experiment (CCASE), located at Hubbard Brook Experimental Forest, NH (USA) is designed to evaluate the combined effects of growing season soil warming and an increased frequency of winter soil freeze-thaw cycles on a northern forest ecosystem. Soils were collected from CCASE over two years (2014 and 2015) and extractable C and N pool sizes, as well as microbial biomass, exoenzymes, and potential net N mineralization and microbial respiration were measured. Soil warming alone did not stimulate microbial activity at any sampling time. Extractable amino acid N and organic C, proteolytic and acid phosphatase activity, and microbial respiration were reduced by the combination of warming in the growing season and winter soil freeze-thaw cycles during the period following snowmelt through tree leaf out in spring. The declines in microbial activity also coincided with an 85% decline in microbial biomass N at that time. Growing season warming and winter soil freeze-thaw cycles also resulted in a two-fold reduction in phenol oxidase activity and a 20% reduction in peroxidase activity and these declines persisted throughout the snow-free time of the year. The results from this study suggest that positive feedbacks between warming and rates of soil C and N cycling over the next 100 years will be partially mitigated by an increased frequency of winter soil freeze-thaw cycles, which decrease microbial biomass and rates of soil microbial activity.

期刊论文 2018-01-01 DOI: 10.1016/j.soilbio.2017.09.026 ISSN: 0038-0717

Snow cover is projected to decline during the next century in many ecosystems that currently experience a seasonal snowpack. Because snow insulates soils from frigid winter air temperatures, soils are expected to become colder and experience more winter soil freeze-thaw cycles as snow cover continues to decline. Tree roots are adversely affected by snowpack reduction, but whether loss of snow will affect root-microbe interactions remains largely unknown. The objective of this study was to distinguish and attribute direct (e.g., winter snow- and/or soil frost-mediated) vs. indirect (e.g., root-mediated) effects of winter climate change on microbial biomass, the potential activity of microbial exoenzymes, and net N mineralization and nitrification rates. Soil cores were incubated in situ in nylon mesh that either allowed roots to grow into the soil core (2mm pore size) or excluded root ingrowth (50m pore size) for up to 29months along a natural winter climate gradient at Hubbard Brook Experimental Forest, NH (USA). Microbial biomass did not differ among ingrowth or exclusion cores. Across sampling dates, the potential activities of cellobiohydrolase, phenol oxidase, and peroxidase, and net N mineralization rates were more strongly related to soil volumetric water content (P<0.05; R-2=0.25-0.46) than to root biomass, snow or soil frost, or winter soil temperature (R-2<0.10). Root ingrowth was positively related to soil frost (P<0.01; R-2=0.28), suggesting that trees compensate for overwinter root mortality caused by soil freezing by re-allocating resources towards root production. At the sites with the deepest snow cover, root ingrowth reduced nitrification rates by 30% (P<0.01), showing that tree roots exert significant influence over nitrification, which declines with reduced snow cover. If soil freezing intensifies over time, then greater compensatory root growth may reduce nitrification rates directly via plant-microbe N competition and indirectly through a negative feedback on soil moisture, resulting in lower N availability to trees in northern hardwood forests.

期刊论文 2016-12-01 DOI: 10.1002/ecy.1599 ISSN: 0012-9658
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页