共检索到 8

Accurately quantifying the impact of permafrost degradation and soil freeze-thaw cycles on hydrological processes while minimizing the reliance on observational data are challenging issues in hydrological modeling in cold regions. In this study, we developed a modular distributed hydro-thermal coupled hydrological model for cold regions (DHTC) that features a flexible structure. The DHTC model couples heat-water transport processes by employing the conduction-advection heat transport equation and Richard equation considering ice-water phase change. Additionally, the DHTC model integrates the influence of organic matter into the hydrothermal parameterization scheme and includes a subpermafrost module based on the flow duration curve analysis to estimate cold-season streamflow sustained by subpermafrost groundwater. Moreover, we incorporated energy consumption due to ice phase changes to the available energy, enhancing the accuracy of evaporation estimation in cold regions. A comprehensive evaluation of the DHTC model was conducted. At the point scale, the DHTC model accurately replicates daily soil temperature and moisture dynamics at various depths, achieving average R-2 of 0.98 and 0.87, and average RMSE of 0.61degree celsius and 0.03 m(3)m(-3), respectively. At the basin scale, DHTC outperformed (Daily: R-2 = 0.66, RMSE = 0.75 mm; Monthly: R-2 = 0.90, RMSE = 15.7 mm) the GLDAS/FLDAS Noah, GLDAS/VIC, and PML-V2 models in evapotranspiration simulation. The DHTC model also demonstrated reasonable performance in simulating daily (NSE = 0.70, KGE = 0.84), monthly (NSE = 0.86, KGE = 0.90), and multi-year monthly (NSE = 0.97, KGE = 0.93) streamflow in the Source Regions of Yangtze River. DHTC also successfully reproduced the snow depth in basin-averaged time series and spatial distributions (RMSE = 0.86 cm). The DHTC model provides a robust tool for exploring the interactions between permafrost and hydrological processes, and their responses to climate change.

2024-11-01 Web of Science

This study uses a new dataset on gauge locations and catchments to assess the impact of 21st-century climate change on the hydrology of 221 high-mountain catchments in Central Asia. A steady-state stochastic soil moisture water balance model was employed to project changes in runoff and evaporation for 2011-2040, 2041-2070, and 2071-2100, compared to the baseline period of 1979-2011. Baseline climate data were sourced from CHELSA V21 climatology, providing daily temperature and precipitation for each subcatchment. Future projections used bias-corrected outputs from four General Circulation Models under four pathways/scenarios (SSP1 RCP 2.6, SSP2 RCP 4.5, SSP3 RCP 7.0, SSP5 RCP 8.5). Global datasets informed soil parameter distribution, and glacier ablation data were integrated to refine discharge modeling and validated against long-term catchment discharge data. The atmospheric models predict an increase in median precipitation between 5.5% to 10.1% and a rise in median temperatures by 1.9 degrees C to 5.6 degrees C by the end of the 21st century, depending on the scenario and relative to the baseline. Hydrological model projections for this period indicate increases in actual evaporation between 7.3% to 17.4% and changes in discharge between + 1.1% to -2.7% for the SSP1 RCP 2.6 and SSP5 RCP 8.5 scenarios, respectively. Under the most extreme climate scenario (SSP5-8.5), discharge increases of 3.8% and 5.0% are anticipated during the first and second future periods, followed by a decrease of -2.7% in the third period. Significant glacier wastage is expected in lower-lying runoff zones, with overall discharge reductions in parts of the Tien Shan, including the Naryn catchment. Conversely, high-elevation areas in the Gissar-Alay and Pamir mountains are projected to experience discharge increases, driven by enhanced glacier ablation and delayed peak water, among other things. Shifts in precipitation patterns suggest more extreme but less frequent events, potentially altering the hydroclimate risk landscape in the region. Our findings highlight varied hydrological responses to climate change throughout high-mountain Central Asia. These insights inform strategies for effective and sustainable water management at the national and transboundary levels and help guide local stakeholders.

2024-09-01 Web of Science

Study RegionThe Naryn River Basin, KyrgyzstanStudy FocusWe investigate the impacts of climate change in the basin based on two families of General Circulation Models (GCMs) using the hydrological model SWAT. The forcing datasets are the widely used ISIMIP2 (I2) and the newly derived ISIMIP3 (I3) data which refer to the 5th and 6th stage of the Coupled Model Intercomparison Project (CMIP). Due to notable differences in the forcing we evaluate their impacts on various hydrological components of the basin, such as discharge, evapotranspiration (ETA) and soil moisture (SM). Besides, a partial correlation (PC) analysis is used to assess the meteorological controls of the basin with special emphasize on the SM-ETA coupling. New Hydrological Insights for the RegionAgreement in the basin's projections is found, such as discharge shifts towards an earlier peak flow of one month, significant SM reductions and ETA increases. I3 temperature projections exceed their previous estimates and show an increase in precipitation, which differs from I2. However, the mitigating effects do not lead to an improvement in the region's susceptibility to soil moisture deficits. The PC study reveals enhanced water-limited conditions expressed as positive SM-ETA feedback under I2 and I3, albeit slightly weaker under I3.

2023-04-01 Web of Science

On the Arctic Coastal Plain (ACP) in northern Alaska (USA), permafrost and abundant surface-water storage define watershed hydrological processes. In the last decades, the ACP landscape experienced extreme climate events and increased lake water withdrawal (LWW) for infrastructure construction, primarily ice roads and industrial operations. However, their potential (combined) effects on streamflow are relatively underexplored. Here, we applied the process-based, spatially distributed hydrological and thermal Water Balance Simulation Model (10 m spatial resolution) to the 30 km(2) Crea Creek watershed located on the ACP. The impacts of documented seasonal climate extremes and LWW were evaluated on seasonal runoff (May-August), including minimum 7-day mean flow (MQ7), the recovery time of MQ7 to pre-perturbation conditions, and the duration of streamflow conditions that prevents fish passage. Low-rainfall scenarios (21% of normal, one to three summers in a row) caused a larger reduction in MQ7 (-56% to -69%) than LWW alone (-44% to -58%). Decadal-long consecutive LWW under average climate conditions resulted in a new equilibrium in low flow and seasonal runoff after 3 years that included a disconnected stream network, a reduced watershed contributing area (54% of total watershed area), and limited fish passage of 20 days (vs. 6 days under control conditions) throughout summer. Our results highlight that, even under current average climatic conditions, LWW is not offset by same-year snowmelt as currently assumed in land management regulations. Effective land management would therefore benefit from considering the combined impact of climate change and industrial LWWs.

2022-08-01 Web of Science

We analyse an ensemble of statistically downscaled Global Climate Models (GCMs) to investigate future water availability in the Upper Indus Basin (UIB) of Pakistan for the time horizons when the global and/or regional warming levels cross Paris Agreement (PA) targets. The GCMs data is obtained from the 5th Phase of Coupled Model Inter-Comparison Project under two Representative Concentration Pathways (RCP4.5 and RCP8.5). Based on the five best performing GCMs, we note that global 1.5 degrees C and 2.0 degrees C warming thresholds are projected in 2026 and 2047 under RCP4.5 and 2022 and 3036 under RCP8.5 respectively while these thresholds are reached much earlier over Pakistan i.e. 2016 and 2030 under RCP4.5 and 2012 and 2025 under RCP8.5 respectively. Interestingly, the GCMs with the earliest emergence at the global scale are not necessarily the ones with the earliest emergence over Pakistan, highlighting spatial non-linearity in GCMs response. The emergence of 2.0 degrees C warming at global scale across 5 GCMs ranges from 2031 (CCSM4) to 2049 (NorESM) under RCP8.5. Precipitation generally exhibits a progressive increasing trend with stronger changes at higher warming or radiative forcing levels. Hydrological simulations representing the historical, 1.5 degrees C and 2.0 degrees C global and region warming time horizons indicate a robust but seasonally varying increase in the inflows. The highest inflows in the baseline and future are witnessed in July. However, the highest future increase in inflows is projected in October under RCP4.5 (37.99% and 65.11% at 1.5 degrees C and 2.0 degrees C) and in April under RCP8.5 (37% and 62.05% at 1.5 degrees C and 2.0 degrees C). These hydrological changes are driven by increases in the snow and glacial melt contribution, which are more pronounced at 2.0 degrees C warming level. These findings should help for effective water management in Pakistan over the coming decades. (c) 2021 Elsevier B.V. All rights reserved.

2021-09-20 Web of Science

The ACRU agro-hydrological modeling system provided the framework, containing code to simulate all major hydrological processes, including actual evapotranspiration estimates, to simulate the impacts of climate change in the Cline River watershed, Alberta. Canada, under historical (1961-1990) and a range of future climate conditions (2010-2039, 2040-2069, and 2070-2099). Whilst uncertainties in the estimation of many hydrological variables were inevitable, verification analyses carried out for the historical baseline period resulted in good to very good simulations of a range of hydrological processes, including daily air temperature, snow water equivalent and streamflow. Five climate change scenarios were selected to cover the range of possible future climate conditions. In order to generate future climate time series, the 30-year baseline time series was perturbed according to predicted changes in air temperature and precipitation. Projected increases in air temperature and precipitation resulted in mean annual increases in potential and actual evapotranspiration, groundwater recharge, soil moisture, and streamflow in the Cline River watershed. Increases in both high and low flow magnitudes and frequencies, and large increases to winter and spring streamflow are predicted for all climate scenarios. Spring runoff and peak streamflow were simulated to occur up to 4 weeks earlier than in the 1961-1990 baseline period. Predicted changes were simulated to progressively increase into the future. A clear shift in the future hydrological regime is predicted, with significantly higher streamflow between October and June, and lower streamflow in July-September. (C) 2011 Elsevier B.V. All rights reserved.

2012-01-01 Web of Science

Subarctic wetlands that exist as bogs, fens, swamps, marshes and shallow water, comprise 3% of the Canadian landscape. They have been recognized as important ecotones between the arctic tundra and boreal forest. Recently, there has been growing research interest in the hydrological characteristics of arctic and subarctic wetland systems in the need for more efficiently conserving wetlands and assessing climate change related impacts. This research targets the Deer River watershed near Churchill, Manitoba, which represents a typical subarctic wetland system in the Hudson Bay Lowlands. An extensive field investigation was first conducted during the summer from 2006 to 2008 to facilitate in-depth understanding of the wetland hydrology. The results provided evidence to indicate a strong relationship between air temperature and evapotranspiration. Permafrost table, soil moisture and streamflow were monitored and analyzed to advance the acknowledgement of the climatic, geographical and hydrological characteristics of subarctic wetlands. To quantify the water cycle and further validate the findings from field investigation, a Canadian distributed hydrological model, WATFLOOD, was employed to simulate the hydrologic processes in the targeted watershed. The results demonstrated that snowmelt in the spring season (April-June) was the major source of water supplement of subarctic wetlands. Most light and moderate rainfall events in summer (July-September) generated relatively small amounts of runoff which can be related to canopy interception, depression storage, porous soil layers, impermeable permafrost and intensive evapotranspiration. A lag of 2-8 days between the peaks of rainfall and stream runoff was observed in both summer and fall. This study is expected to benefit wetland conservation and the assessment of climate change related impacts in the Canadian northern regions.

2011-12-01 Web of Science

Earlier impact studies have suggested that climate change may severely alter the hydrological cycle in alpine terrain. However, these studies were based on the use of a single or a few climate scenarios only, so that the uncertainties of the projections could not be quantified. The present study helps to remedy this deficiency. For 2 Alpine river basins, the Thur basin (1700 km(2)) and the Ticino basin (1515 km(2)), possible future changes in the natural water budget relative to the 1981-2000 (Thur) and 1991-2000 (Ticino) baselines were investigated by driving the distributed catchment model WaSiM-ETH with a set of 23 regional climate scenarios for monthly mean temperature (T) and precipitation (P). The scenarios referred to 2081-2100 and were constructed by applying a statistical-downscaling technique to outputs from 7 global climate models. The statistical-downscaling scenarios showed changes in annual mean T between +1.3 and +4.8degreesC and in annual total P between -11 and +11%, with substantial variability between months and catchments. The simulated overall changes in the hydrological water cycle were qualitatively robust and independent of the choice of a particular scenario. In all cases, the projections showed strongly decreased snow-pack and shortened duration of snow cover, resulting in time-shifted and reduced runoff peaks. Substantial reductions were also found in summer flows and soil-water availability, in particular at lower elevations. However, the magnitudes and certain aspects of the projected changes depended strongly on the choice of scenario. In particular, quantitative projections of soil moisture in the summer season and of the runoff in both the summer and autumn seasons were found to be quite uncertain, mainly because of the uncertainty present in the scenarios for P. Our findings clearly demonstrate that quantitative assessments of hydrological changes in the Alps using only a small number of scenarios may yield misleading results. This work strengthens our confidence in the overall results obtained in earlier studies and suggests distinct shifts in future Alpine hydrological regimes, with potentially dramatic implications for a wide range of sectors.

2004-05-25 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页