Soot particles released in the atmosphere have long been investigated for their ability to affect the radiative forcing. Although freshly emitted soot particles are generally considered to yield only positive contributions to the radiative forcing, atmospheric aging can activate them into efficient cloud condensation or ice nuclei, which can trigger the formation of persistent clouds and ultimately provide a negative contribution to the radiative forcing. Depending on their residence time in the atmosphere, soot particles can undergo several physical and chemical aging processes that affect their chemical composition, particle size distribution and morphology, and ultimately their optical and hygroscopic properties. The impact of the physical-chemical aging on the properties of soot particles is still difficult to quantify, as well as their effect on the radiative forcing of the atmosphere.This work investigates the hygroscopic properties of chemically aged soot particles obtained from the combustion of aviation fuel, and in particular the interplay between aging mechanisms initiated by two widespread atmospheric oxidizers (O-3 and SO2). Activation is measured in water supersaturation conditions using a cloud condensation nuclei counter. Once particle morphology and size distribution are taken into account, the hygroscopicity parameter kappa is derived using kappa-K & ouml;hler theory and correlated to the change of the chemical composition of the particles aged in a simulation chamber. While fresh soot particles are poor cloud condensation nuclei (kappa < 10(-4)) and are not significantly affected by either O-3 or SO2 at the timescale of the experiments, rapid activation is observed when they are simultaneously exposed to both oxidizers. Activated particles become efficient cloud condensation nuclei, comparable to the highly hygroscopic particulate matter typically found in the atmosphere (kappa = 0.2-0.6 at RH = 20 %). Statistical analysis reveals a correlation between the activation and sulfur-containing ions detected on the chemically aged particles that are absent from the fresh particles.
Both the effects of aerosol hygroscopicity and mixing state on aerosol optical properties were analyzed using ground-based measurements and a Mie model in this study. The sized-resolved particle hygroscopic growth factor at RH = 90% (Gf(90%)) and the enhancement factor for the scattering coefficients (f(RH)(sp)) were measured by a self-constructed Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) and two nephelometers in parallel (PNEPs) respectively from 22nd February to 18th March 2014 in the Pearl River Delta, China. In addition, the particle number size distribution (PNSD) and BC mass concentration (M-BC) were measured simultaneously. During the observation period, the f(RH)(sp) increased sharply along with increasing RH (40%-85%) and the value of f(80%)(sp) was 1.77 +/- 0.18. The mean Gf(90%) for all particles are 1.44 (80 nm), 1.48 (110 nm), 1.52 (150 nm) and 1.55 (200 nm), and the mean Gf(90%) for more-hygroscopic particles are 1.58 (80 nm), 1.63 (110 nm), 1.66 (150 nm) and 1.67 (200 nm) respectively. Based on Gf, PNSD and M-BC, the enhancement factor of the aerosol optical properties (extinction (f(RH)(ep)), scattering (f(RH)(sp)), backscattering (f(RH)(hbsp)), absorption (f(RH)(absp)), and hemispheric backscatter fraction (f(RH)(hbsp))) were calculated under three aerosol mixing state assumptions. The results show that the calculated f(80%)(sp) values agreed well with the ones measured by PNEPs, illustrating that the Gf size distribution fittings are reasonable. The f(RH)(ep), f(RH)(sp) and f(RH)(hbsp) increased along with increasing RH for three mixtures, while f(RH)(HBF) decreased. The f(RH)(absp) increased for the homogenously internal mixture, but remained stable for the external mixture. For the core-shell mixture, the f(RH)(absp) increased from RH = 0 to 75% and then decreased, due to a decrease of light entering the BC core. The enhancement factor of aerosol direct radiative forcing (f(RH)(Fr)) increased sharply as the RH elevated for the external mixing state.However, f(RH)(Fr) increased or decreased along with the elevated RH for the homogenously internal mixture and the core-shell mixture depending on initial value of the aerosol direct radiative forcing (Delta F-r) in a dry condition. (C) 2018 Elsevier B.V. All rights reserved.
In this study, the influences of water solubility and light absorption on the optical properties of organic aerosols were investigated. A size-resolved model for calculating optical properties was developed by combining thermodynamic hygroscopic growth and aerosol dynamics models. The internal mixtures based on the homogeneous and core shell mixing were compared. The results showed that the radiative forcing (RF) of Water Soluble Organic Carbon (WSOC) aerosol can be estimated to range from -0.07 to -0.49 W/m(2) for core shell mixing and from -0.09 to -0.47 W/m(2) for homogeneous mixing under the simulation conditions (RH = 60%). The light absorption properties of WSOC showed the mass absorption efficiency (MAE) of WSOC can be estimated 0.43-0.5 m(2)/g, which accounts for 5-10% of the MAE of elemental carbon (EC). The effect on MAE of increasing the imaginary refractive index of WSOC was also calculated, and it was found that increasing the imaginary refractive index by 0.001i enhanced WSOC aerosol absorption by approximately 0.02 m(2)/g. Finally, the sensitivity test results revealed that changes in the fine mode fraction (FMF) and in the geometric mean diameter of the acthmulation mode play important roles in estimating RF during hygroscopic growth. (C) 2015 Elsevier Ltd. All rights reserved.