共检索到 776

Taurine (TAU) has recently been found to have an impactful role in regulating plant responses under abiotic stresses. This study presented the comparative effects of TAU seed priming and foliar spray application on chickpea plants exposed to hexavalent chromium. Taurine priming and foliar applications (1.6 and 2.4 mM) notably modulated morpho-physiological and biochemical responses of plants under Cr(VI) stress. Plants subjected to 25 mg kg-1 soil Cr in the form of potassium dichromate (K2Cr2O7) displayed a significant reduction in growth, chlorophyll, and uptake of essential nutrients (N, K, P, and Ca). Cr(VI) toxicity also resulted in a notable increase in osmolyte accumulation, lipid peroxidation, relative membrane permeability, ROS generation, antioxidant enzyme activities, antioxidant compounds, endogenous Cr levels, and aerial Cr translocation. Taurine abridged lipoxygenase activity to diminish lipid peroxidation owing to the overproduction of ROS initiated by a higher Cr content. The acquisition and assimilation of essential nutrients were augmented by the TAU-related decrease in leaf and root Cr levels. Consequently, TAU enhanced growth by mitigating oxidative damage, reducing Cr content in the aerial parts, and reinforcing the activities of antioxidant enzymes. Compared to foliar spray, TAU seed priming has demonstrated superior efficacy in mitigating Cr phytotoxicity in plants.

期刊论文 2025-12-31 DOI: 10.1080/03650340.2025.2462042 ISSN: 0365-0340

As the increasing demand for deep mineral resource extraction and the construction of deep vertical shafts by the artificial ground freezing method, the stability and safety of shaft that traverse thick alluvial depend significantly on their interaction with the surrounding deep frozen soil medium. Such interaction is directly conditioned by the mechanical properties of the deep frozen soil. To precisely capture these in-situ mechanical properties, the mechanical parameters tests using remodeled frozen specimens cannot ignore the disparities in consolidation history, stress environment and formation conditions between the deep and shallow soils. This study performs a series of long-term high-pressure K0 consolidation (where K0 represents the static earth pressure coefficient, describing the ratio of horizontal to vertical stress under zero lateral strain conditions), freezing under sustained load and unloading triaxial shear tests utilizing remodeled deep clay. This study presents the response of unloading strength and damage properties under varying consolidation stresses, durations, and freezing temperatures. The unloading strength increases sharply and then stabilizes with consolidation time. The unloading strength shows an approximate linear positive correlation with the consolidation stress, while a negative correlation with the freezing temperature. The strengthening rate of the unloading strength due to freezing temperature tends to decrease with increasing consolidation time. Additionally, an improved damage constitutive model was proposed and validated by incorporating the initial K0 stress state and a Weibull-based assumption for damage elements. Based on the back propagation (BP) neural network, a prediction method for the stress-strain curve was offered according to the consolidation stress level, initial stress state, and temperature. These results can provide references for improving the mechanical testing methods of deep frozen clay and revealing differences in mechanical properties between deep and shallow soils.

期刊论文 2025-12-01 DOI: 10.1007/s40948-025-00984-w ISSN: 2363-8419

Due to the serious environmental pollution generated by plastic packaging, chitosan (CS)-based biodegradable films are gradually gaining popularity. However, the limited antioxidant and bacteriostatic capabilities of CS, the poor mechanical properties and water resistance of pure CS films limit their widespread adoption in food packaging. In this study, new multifunctional bioactive packaging films containing monosaccharide-modified CS and polyvinyl alcohol (PVA) were prepared to address the shortcomings of pure CS films. Initially, Maillard reaction (MR) products were prepared by conjugating chitosan with galactose/mannose (CG/CM). The successful preparation of CG/CM was confirmed using UV spectroscopy, fluorescence spectroscopy, fourier transform infrared spectroscopy (FTIR) and high-performance gel permeation chromatography (HPGPC). At an 8 mg/mL concentration, the DPPH radical scavenging activities of CM and CG were 5 and 15 times higher than that of CS, respectively. At the maximum concentration of 200 mu g/mL, both CM and CG exhibited greater inhibitory effects on the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, compared to CS. Additionally, CM and CG demonstrated significantly stronger protection against oxidative damage in Vero cells than CS. These results indicate that CG and CM possess superior antioxidant and antibacterial capabilities in comparison to CS. Then, the effects of the MR on the structures and functional properties of chitosan-based films were extensively examined. Compared with pure CS films, the MR in the CG/CM films significantly changed the film microstructure, enhanced the UV-barrier property and water resistance, and only slightly reduced thermal stability. The MR reduced the tensile strength but increased the elongation at break. Meanwhile, the composite films hold good soil degradation ability. Moreover, the CG/CM films possessed excellent antioxidant and antibacterial properties and demonstrated superior fresh-keeping capacity in the preservation of strawberries and cherry tomatoes (effectively prolonged for at least 2 days or 3-6 days). Our study indicates that CG/CM films can be used as a promising biodegradable antioxidant and antibacterial biomaterial for food packaging.

期刊论文 2025-10-01 DOI: 10.1016/j.foodhyd.2025.111269 ISSN: 0268-005X

A group of earthquakes typically consists of a mainshock followed by multiple aftershocks. Exploration of the dynamic behaviors of soil subjected to sequential earthquake loading is crucial. In this paper, a series of cyclic simple shear tests were performed on the undisturbed soft clay under different cyclic stress amplitudes and reconsolidation degrees. The equivalent seismic shear stress was calculated based on the seismic intensity and soil buried depth. Furthermore, reconsolidation was conducted at the loading interval to investigate the influence of seismic history. An empirical model for predicting the variation of the accumulative dissipated energy with the number of cycles was established. The energy dissipation principle was employed to investigate the evolution of cyclic shear strain and equivalent pore pressure. The findings suggested that as the cyclic stress amplitude increased, incremental damage caused by the aftershock loading to the soil skeleton structure became more severe. This was manifested as the progressive increase in deformation and the rapid accumulation of dissipated energy. Concurrently, the reconsolidation process reduced the extent of the energy dissipation by inhibiting misalignment and slippage among soil particles, thereby enhancing the resistance of the soft clay to subsequent dynamic loading.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109540 ISSN: 0267-7261

Thallium sulphate (TLM) is a highly hazardous metal known to induce severe renal damage. Syringetin (SGN) is a naturally derived polyphenolic compound that demonstrates excellent medicinal properties. This research trial was conducted to determine the nephroprotective ability of SGN to inhibit TLM induced renal toxicity in rats by assessing different parameters including oxidative stress, apoptotic and inflammatory markers as well as histomorphological parameters. Thirty-two Sprague Dawley rats were apportioned into the control, TLM (6.4 mgkg- 1), TLM (6.4 mgkg- 1) + SGN (10 mgkg- 1) and SGN (10 mgkg- 1) alone administered group. Our findings revealed that TLM exposure promoted renal inflammation which was evident by increased mRNA expression of myeloid differentiation primary response 88 (MYD88), toll-like receptor 4 (TLR4), interleukin-1 beta (IL-1 beta), high mobility group box1 (HMGB1), tumor necrosis factor- alpha (TNF-alpha), receptor for advanced glycation end products (RAGE), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and nuclear factor- kappa B (NF-kappa B). The concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) were exacerbated while the enzymatic action of heme oxygenase-1 (HO-1), superoxide dismutase (SOD), glutathione reductase (GSR), catalase (CAT), & tissue contents of glutathione (GSH) were reduced after TLM intoxication. Serum concentrations of N-Acetylglucosamine (NAG), blood urea nitrogen (BUN), Kidney Injury Molecule-1 (KIM-1), Neutrophil Gelatinase-Associated Lipocalin (NGAL), creatinine, uric acid were observed elevated while a notable reduction was noted in the concentration of creatinine clearance following the dose administration of TLM. The levels of Bcl-2-associated X protein (Bax), cysteine-aspartic acid protease-3 (Caspase-3) & cysteine-aspartic acid protease-9 (Caspase-9) were exacerbated while the concentration of B-cell lymphoma-2 (Bcl-2) was notably suppressed following regimen of TLM. Renal tissues were distorted after TLM administration. In contrast, SGN supplementation notably restored oxidative profile, reduced pro-inflammatory and apoptotic markers as well as improved renal histology.

期刊论文 2025-10-01 DOI: 10.1016/j.tice.2025.103003 ISSN: 0040-8166

Intervertebral disc degeneration (IVDD) is a globally prevalent disease, yet achieving dual repair of tissue and function presents significant challenges. Considering reactive oxygen species (ROS) is a primary cause of IVDD, and given the decrease of nucleus pulposus cells (NPCs) and extensive degradation of extracellular matrix (ECM) during IVDD development, the present study, inspired by the seeds-and-soil strategy, has developed NPCsloaded TBA@Gel&Chs hydrogel microspheres. These microspheres serve as exogenous supplements of NPCs and ECM analogs, replenishing seeds and soil for nucleus pulposus repair, and incorporating polyphenol antioxidant components to interrupt the oxidative stress-IVDD cycle, thereby constructing a microsphere system where NPCs and ECM support each other. Experiments proved that TBA@Gel&Chs exhibited significant extra-cellular ROS-scavenging antioxidant capabilities while effectively upregulating intracellular antioxidant proteins expression (Sirt3 and Sod2). This dual-action antioxidant capability effectively protects the vitality and physiological functions of NPCs. The therapeutic effects of microspheres on IVDD were also confirmed in rat models, which was found significantly restore histological structure and mechanical properties of degenerated discs. Additionally, RNA-seq results have provided evidences of antioxidant mechanism by which TBA@Gel&Chs protected NPCs from oxidative stress. Therefore, the NPCs-loaded TBA@Gel&Chs microspheres developed in this study have achieved excellent therapeutic effects, offering a paradigm using antioxidant biomaterials combined with cellular therapy for IVDD treatment.

期刊论文 2025-10-01 DOI: 10.1016/j.biomaterials.2025.123326 ISSN: 0142-9612

Salinity stress is one of the most detrimental abiotic factors affecting plant development, harming vast swaths of agricultural land worldwide. Silicon is one element that is obviously crucial for the production and health of plants. With the advent of nanotechnology in agricultural sciences, the application of silicon oxide nanoparticles (SiO-NPs) presents a viable strategy to enhance sustainable crop production. The aim of this study was to assess the beneficial effects of SiO-NPs on the morpho-physio-biochemical parameters of rice (Oryza sativa L., variety: DRR Dhan 73) under both normal and saline conditions. To create salt stress during transplanting, 50 mM NaCl was injected through the soil. 200 mM SiO-NPs were sprayed on the leaves 25 days after sowing (DAS). It was evident that salt stress significantly hindered rice growth because of the reductions in shot length (41 %), root length (38 %), shot fresh mass (40 %), root fresh mass (47 %), shoot dry mass (48 %), and root dry mass (39 %), when compared to controls. Together with this growth inhibition, elevated oxidative stress markers including a 78 % increase in malondialdehyde (MDA) and a 67 % increase in hydrogen peroxide (H2O2) indicating enhanced lipid peroxidation were noted. Increasing the chlorophyll content (14 %), photosynthetic rate (11 %), protein levels, total free amino acids (TFAA; 13 %), and total soluble sugars (TSS; 11 %), all help to boost nitrogen (N; 16 %), phosphorous (P; 14 %), potassium (K; 12 %), and vital nutrients. The adverse effects of salt stress were significantly reduced by exogenous application of SiO-NPs. Additionally; SiO-NPs dramatically raised the activity of important antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT), improving the plant's ability to scavenge reactive oxygen species (ROS) and thereby lowering oxidative damage brought on by salt. This study highlights SiO-NPs' potential to develop sustainable farming practices and provides significant new insights into how they enhance plant resilience to salinity, particularly in salt-affected regions worldwide.

期刊论文 2025-10-01 DOI: 10.1016/j.plantsci.2025.112588 ISSN: 0168-9452

Nanoplastics (NPs) and zinc (Zn), both widespread in soil environments, present considerable risks to soil biota. While NPs persist environmentally and act as vectors for heavy metals like Zn, their combined toxicity, especially in soil invertebrates, remains poorly understood. This study evaluates the individual and combined effects of Zn and NPs on earthworm coelomocytes and explores their interactions with Cu/Zn-superoxide dismutase (SOD), an antioxidant enzyme. Molecular docking revealed that NPs bind near the active site of SOD through pi-cation interactions with lysine residues, further stabilized by neighboring hydrophobic amino acids. Viability assays indicated that NPs alone (20 mg/L) had negligible impact (94.54 %, p > 0.05), Zn alone (300 mg/L) reduced viability to 80.02 %, while co-exposure reduced it further to 73.16 %. Elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA) levels were elevated to 186 % and 173 % under co-exposure, alongside greater antioxidant enzyme disruption, point to synergistic toxicity. Dynamic light scattering and zeta potential (From -13 to -7 mV) analyses revealed larger particle sizes in the combined system, indicative of enhanced protein interactions. Conformational changes in SOD, such as alpha-helix loss and altered fluorescence, further support structural disruption. These findings demonstrate that co-exposure to NPs and Zn intensifies cellular and protein-level toxicity via integrated physical and biochemical mechanisms, providing critical insight into the ecological risks posed by such co-contaminants in soil environments.

期刊论文 2025-09-15 DOI: 10.1016/j.envpol.2025.126624 ISSN: 0269-7491

Arsenic (As) contamination in soil presents significant challenges to plant growth and development, impacting agricultural productivity, food safety, ecosystem stability, and human health. This study investigates the effects of As toxicity on the medicinal plant Ocimum basilicum L. cultivar CIM-Saumya by assessing the impact of varying As concentrations (1, 5, 10, and 25 mg kg-1 of soil) on various physio-biochemical and microscopic parameters. Controlled experiments were conducted to assess the photosynthetic rate, gas exchange, and the activities of carbonic anhydrase (CA), Rubisco, and nitrate reductase (NR) enzymes. In addition, the concentrations of non-enzymatic antioxidants (proline, flavonoids, and phenolic compounds) and enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) were analyzed. Alterations in glandular trichomes, essential oil (EO) content, and composition were also evaluated. Confocal laser scanning microscopy (CLSM) was utilized to examine root cell viability and detect reactive oxygen species (ROS). Our results revealed that As exposure significantly inhibited physio-biochemical activities in O. basilicum, with low As concentrations (1 mg kg-1) enhancing EO content by 18.75 %. However, higher As concentrations (25 mg kg-1) induced oxidative stress, evidenced by increased malondialdehyde (MDA), ROS accumulation, reduced trichome size and density, and smaller stomatal apertures. The highest As concentration resulted in a 53.12 % reduction in EO content. These findings demonstrate that O. basilicum exhibits differential responses to As stress, with low concentrations enhancing EO production, while high concentrations cause oxidative damage and reduced EO content, providing insights into the plant's adaptive strategies and potential alterations in its aroma and therapeutic properties under As stress.

期刊论文 2025-09-15 DOI: 10.1016/j.envpol.2025.126579 ISSN: 0269-7491

Zn2+ play an important role in maintaining the normal functioning of living organisms, and excessive or insufficient levels can cause serious health problems. Zn2+ play a vital role in maintaining normal biological functions, and abnormal levels Zn2+ may lead to a range of severe health issues. Therefore, real-time and accurate detection of Zn2+ is critically important. Given the widespread presence of Zn2+ in living organisms and external environments, developing probes suitable for multi-scenario Zn2+ detection is of significant practical value. In this study, a novel probe SSD was synthesized using salicylaldehyde as the precursor, enabling ultra-sensitive Zn2+ detection with a detection limit as low as 9.1 nM. The probe SSD was successfully applied to the detection of Zn2+ in water, soil, and food samples. In addition, an SSD-based Zn2+ smartphone detection platform was developed, which can quickly detect the content of Zn2+ in actual samples. Moreover, due to its excellent optical properties and low toxicity, SSD was able to detect both intracellular and extracellular Zn2+. Most importantly, probe SSD demonstrated the capability to monitor real-time changes in Zn2+ concentrations during cellular oxidative damage, providing valuable insights for research on related physiological diseases.

期刊论文 2025-09-05 DOI: 10.1016/j.molstruc.2025.142461 ISSN: 0022-2860
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共776条,78页