共检索到 504

Bedrock-soil layer slopes (BSLSs) are widely distributed in nature. The existence of the interface between bedrock and soil layer (IBSL) affects the failure modes of the BSLSs, and the seismic action makes the failure modes more complex. In order to accurately evaluate the safety and its corresponding main failure modes of BSLSs under seismic action, a system reliability method combined with the upper bound limit analysis method and Monte Carlo simulation (MCS) is proposed. Four types of failure modes and their corresponding factors of safety (Fs) were calculated by MATLAB program coding and validated with case in existing literature. The results show that overburden layer soil's strength, the IBSL's strength and geometric characteristic, and seismic action have significant effects on BSLSs' system reliability, failure modes and failure ranges. In addition, as the cohesion of the inclination angle of the IBSL and the horizontal seismic action increase, the failure range of the BSLS gradually approaches the IBSL, which means that the damage range becomes larger. However, with the increase of overburden layer soil's friction angle, IBSL's depth and strength, and vertical seismic actions, the failure range gradually approaches the surface of the BSLS, which means that the failure range becomes smaller.

期刊论文 2025-12-31 DOI: 10.1080/19475705.2024.2442020 ISSN: 1947-5705

An analytical methodology was developed for the first time in this work enabling the simultaneous enantiomeric separation of the fungicide fenpropidin and its acid metabolite by Capillary Electrophoresis. A dual cyclodextrin system consisting of 4 % (w/v) captisol with 10 mM methyl-beta-cyclodextrin was employed in a 100 mM sodium acetate buffer at pH 4.0. Optimal experimental conditions (temperature 25 degrees C, separation voltage -25 kV, and hydrodynamic injection of 50 mbar x 10 s) allowed the simultaneous separation of the four enantiomers in <10.7 min with resolutions of 3.1 (fenpropidin) and 3.2 (its acid metabolite). Analytical characteristics of the method were evaluated and found adequate for the quantification of both chiral compounds with a linearity range from 0.75 to 70 mg L-1, good accuracy (trueness included 100 % recovery, precision with RSD<6 %), and limits of detection and quantification of 0.25 and 0.75 mg L-1, respectively, for the four enantiomers. No significant differences were found between the concentrations determined and labelled of fenpropidin in a commercial agrochemical formulation. The stability over time (0-42 days) of fenpropidin enantiomers using the commercial agrochemical formulation was evaluated in two sugar beet soils, revealing to be stable at any time in one sample, while in the other a decrease of 45 % was observed after 42 days. Individual and combined toxicity of fenpropidin and its metabolite was determined for the first time for marine organism Vibrio fischeri, demonstrating higher damage caused by parent compound. Synergistics and antagonists' interactions were observed at low and high effects levels of contaminants.

期刊论文 2025-12-01 DOI: 10.1016/j.talanta.2025.128233 ISSN: 0039-9140

Earthquakes are common geological disasters, and slopes under seismic loading can trigger coseismic landslides, while also becoming unstable due to accumulated damage caused by the seismic activity. Reinforced soil slopes are widely used as seismic-resistant geotechnical systems. However, traditional geosynthetics cannot sense internal damage in reinforced soil systems, and existing in-situ distributed monitoring technologies are not suitable for seismic conditions, thus limiting accurate post-earthquake stability assessments of slopes. This study presents, for the first time, the use of a batch molding process to fabricate self-sensing piezoelectric geogrids (SPGG) for distributed monitoring of soil behavior under seismic conditions. The SPGG's reinforcement and damage sensing abilities were verified through model experiments. Results show that SPGG significantly enhances soil seismic resistance and can detect soil failure locations through voltage distortions. Additionally, the tensile deformation of the reinforcement material can be quantified with sub-centimeter precision by tracking impedance changes, enabling high-precision distributed monitoring of reinforced soil under seismic conditions. Notably, when integrated with wireless transmission technology, the SPGG-based monitoring system offers a promising solution for real-time monitoring and early warning in road infrastructure, where rapid detection and response to seismic hazards are critical for mitigating catastrophic outcomes.

期刊论文 2025-12-01 DOI: 10.1016/j.geotexmem.2025.05.007 ISSN: 0266-1144

The root-knot nematode, Meloidogyne javanica, is one of the most damaging plant-parasitic nematodes, affecting chickpea and causing substantial yield losses worldwide. The damage potential and population dynamics of this nematode in chickpea in Ethiopia have yet to be investigated. In this study, six chickpea cultivars were tested using 12 ranges of initial population densities (Pi) of M. javanica second-stage juveniles (J2): 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 and 128 J2 (g dry soil)-1 in a controlled glasshouse pot experiment. The Seinhorst yield loss and population dynamics models were fitted to describe population development and the effect on different measured growth variables. The tolerance limit (TTFW) for total fresh weight ranged from 0.05 to 1.22 J2 (g dry soil)-1, with corresponding yield losses ranging from 31 to 64%. The minimum yield for seed weight (mSW) ranged from 0.29 to 0.61, with estimated yield losses of 71 and 39%. The 'Haberu' and 'Geletu' cultivars were considered good hosts, with maximum population densities (M) of 16.27 and 5.64 J2 (g dry soil)-1 and maximum multiplication rate (a) values of 6.25 and 9.23, respectively. All other cultivars are moderate hosts for M. javanica; therefore, it is crucial to initiate chickpea-breeding strategies to manage the tropical root-knot nematode M. javanica in Ethiopia.

期刊论文 2025-12-01 DOI: 10.1163/15685411-bja10371 ISSN: 1388-5545

Soft soil subgrades often present significant geotechnical challenges under cyclic loading conditions associated with major infrastructure developments. Moreover, there has been a growing interest in employing various recycled tire derivatives in civil engineering projects in recent years. To address these challenges sustainably, this study investigates the performance of granular piles incorporating recycled tire chips as a partial replacement for conventional aggregates. The objective is to evaluate the cyclic behavior of these tire chip-aggregate mixtures and determining the optimum mix for enhancing soft soil performance. A series of laboratory-scale, stress-controlled cyclic loading tests were conducted on granular piles encased with combi-grid under end-bearing conditions. The granular piles were constructed using five volumetric proportions of (tire chips: aggregates) (%) of 0:100, 25:75, 50:50, 75:25, and 100:0. The tests were performed with a cyclic loading amplitude (qcy) of 85 kPa and a frequency (fcy) of 1 Hz. Key performance indicators such as normalized cyclic induced settlement (Sc/Dp), normalized excess pore water pressure in soil bed (Pexc/Su), and pile-soil stress distribution in terms of stress concentration ratio (n) were analyzed to assess the effectiveness of the different mixtures. Results indicate that the ordinary granular pile (OGP) with (25 % tire chips + 75 % aggregates) offers an optimal balance between performance and sustainability. This mixture reduced cyclic-induced settlement by 86.7 % compared to the OGP with (0 % TC + 100 % AG), with only marginal losses in performance (12.3 % increase in settlement and 2.8 % reduction in stress transfer efficiency). Additionally, the use of combi-grid encasement significantly improved the overall performance of all granular pile configurations, enhancing stress concentration and reducing both settlement and excess pore water pressure. These findings demonstrate the viability of using recycled tire chips as a sustainable alternative in granular piles, offering both environmental and engineering benefits for soft soil improvement under cyclic loading.

期刊论文 2025-11-01 DOI: 10.1016/j.soildyn.2025.109598 ISSN: 0267-7261

A utility tunnel is an infrastructure that consolidates multiple municipal pipeline systems into a shared underground passage. As long linear structures inevitably cross different soils, this paper aims to accurately assess the seismic damage to a shallow-buried utility tunnel in a non-homogeneous zone by employing a viscous-spring artificial boundary and deriving the corresponding nodal force equations. The three-dimensional model of the utility tunnel-soil system is established using finite element software, and a plug-in is developed to simulate the three-dimensional oblique incidence of SV waves with a horizontal non-homogeneous field. In this study, the maximum interstory displacement angle of the utility tunnel is used as the damage indicator. Analysis of structural vulnerability based on IDA method using PGA as an indicator of seismic wave intensity, which considers the angle of oblique incidence of SV waves, the type of seismic waves, and the influence of the nonhomogeneous field on the seismic performance of the utility tunnel. The results indicate that the failure probability of the utility tunnel in different soil types increases with the incident angle and PGA. Additionally, the failure probability under the pulse wave is higher than that under the non-pulse wave; Particular attention is given to the states of severe damage (LS) and collapse (CP), particularly when the angle of incidence is 30 degrees and the PGA exceeds 0.6g, conditions under which the probability of failure is higher. Additionally, the failure probability of the non-homogeneous zone is greater than that of sand and clay; the maximum interlayer displacement angle increases with the incident angle, accompanied by greater PGA dispersion, indicating the seismic wave intensity. The maximum inter-layer displacement angle increases with the incident angle, and the dispersion of the seismic wave intensity indicator (PGA) becomes greater. This paper proposes vulnerability curves for different working conditions, which can serve as a reference for the seismic design of underground structures.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109537 ISSN: 0267-7261

Expansive soil, characterized by significant swelling-shrinkage behavior, is prone to cracking under wet-dry cycles, severely compromising engineering stability. This study combines experimental and molecular dynamics (MD) simulation approaches to systematically investigate the improvement effects and micromechanisms of polyvinyl alcohol (PVA) on expansive soil. First, direct shear tests were conducted to analyze the effects of PVA content (0 %-4 %) and moisture content (30 %-50 %) on the shear strength, cohesive force, and internal friction angle of modified soil. Results show that PVA significantly enhances soil cohesive force, with optimal improvement achieved at 3 % PVA content. Second, wet-dry cycle experiments revealed that PVA effectively suppresses crack propagation by improving tensile strength and water retention. Finally, molecular dynamics simulations uncovered the distribution of PVA between montmorillonite (MMT) layers and its influence on interfacial friction behavior. The simulations demonstrated that PVA forms hydrogen bonding networks, enhancing interlayer interactions and frictional resistance. The improved mechanical performance of PVAmodified soil is attributed to both nanoscale bonding effects and macroscale structural reinforcement. This study provides theoretical insights and technical support for expansive soil stabilization.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107419 ISSN: 0266-352X

Shallow cut-and-cover underground structures, such as subway stations, are traditionally designed as rigid boxes (moment-resisting connections between the main structural members), seeking internal hyperstaticity and high lateral (transverse) stiffness to achieve important seismic capacity. However, since seismic ground motions impose racking drifts, this proved rather prejudicial, with great structural damage and little resilience. Therefore, two previous papers proposed an opposite strategy seeking low lateral (transverse) stiffness by connecting the structural elements flexibly (hinging and sliding). Under severe seismic inputs, these structures would accommodate racking without significant damage; this behaviour is highly resilient. The seismic resilience of this solution was numerically demonstrated in the well-known Daikai station (Kobe, Japan) and a station located in Chengdu (China). This paper is a continuation of these studies; it aims to extend, deepen, and ground this conclusion by performing a numerical parametric study on these two stations in a wide and representative set of situations characterised by the soil type, overburden depth, engineering bedrock position, and high- and lowlateral-stiffness of the stations. The performance indices are the racking displacement and the structural damage (quantified through concrete damage variables). The findings of this study validate the previous remarks and provide new insights.

期刊论文 2025-10-01 DOI: 10.1016/j.tust.2025.106768 ISSN: 0886-7798

The thermo-mechanical (TM) behaviour of the energy pile (EP) group becomes more complicated in the presence of seepage, and the mechanism by which seepage impacts the EP group remains unclear.In the current work, a 2 x 2 scale model test bench of EP group was set up to investigate the TM behaviour of EP group with seepage. The test results indicate that the heat exchange performance of EP group with seepage can be significantly enhanced, but also leads to obvious differences in the temperature distribution of pile and surrounding soil along the seepage direction, and thus causes evident differences in the mechanical properties between the front pile and the back pile in pile group. Compared with the parallel connection form, the thermal performance of EP group with the series connection form is slightly attenuated. However, the mechanical properties of various piles in the EP group differ significantly. Under the action of seepage, the mechanical balance properties of various piles in the forward series form are optimal, followed by the parallel form, and the reverse series form is the least optimal. A 3-D CFD model was established to further obtain the influence of seepage and arrangement forms on EP group. The findings indicate that seepage can not only mitigate thermal interference between distinct piles but also expedite the process of heat transfer from pile-soil to reach a state of stability. Concurrently, the thermal migration effect induced by seepage will be superimposed along the seepage direction, resulting in the elevation of thermal interference of each pile along the seepage direction, and the superposition of thermal migration effect increases with the time. Under the same seepage condition, the cross arrangement can enhance the thermal performance of EP group, optimize the temperature distribution of pile and soil, and thus the imbalance of mechanical properties among pile groups can be reduced. In addition, the concepts of thermal interference coefficient and heat exchange rate per unit soil volume are introduced to facilitate a more precise evaluation of the thermal interference degree of each pile in the pile group and the heat exchange performance under different pile arrangement forms.The standard deviation and mean value in the statistical method are used to evaluate the equilibrium of mechanical properties of pile group, which is more intuitive to compare the differences in mechanical properties of pile groups under different working conditions.

期刊论文 2025-09-01 DOI: 10.1016/j.energy.2025.136943 ISSN: 0360-5442

Lunar soil, as an in-situ resource, holds significant potential for constructing bases and habitats on the Moon. However, such constructions face challenges including limited mechanical strength and extreme temperature fluctuations ranging from -170 degrees C to +133 degrees C between lunar day and night. In this study, we developed a 3D-printed geopolymer derived from lunar regolith simulant with an optimized zig-zag structure, exhibiting exceptional mechanical performance and thermal stability. The designed structure achieved remarkable damage tolerance, with a compressive strength exceeding 12.6 MPa at similar to 80 vol% porosity and a fracture strain of 3.8 %. Finite element method (FEM) simulations revealed that the triangular frame and wavy interlayers enhanced both stiffness and toughness. Additionally, by incorporating strategically placed holes and extending the thermal diffusion path, we significantly improved the thermal insulation of the structure, achieving an ultralow thermal conductivity of 0.24 W/(m K). Furthermore, an iron-free geopolymer coating reduced overheating under sunlight by 51.5 degrees C, underscoring the material's potential for space applications.

期刊论文 2025-09-01 DOI: 10.1016/j.compositesa.2025.108989 ISSN: 1359-835X
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共504条,51页