BACKGROUND Chaetanaphothrips orchidii is an invasive thrips of tropical origin that was detected in 2016 in Spanish citrus, where it can damage up to 70% of the fruit. Pupation site and emergence rates are key biological traits for thrips management that are unknown for C. orchidii. Here, we determined the pupation site and period of C. orchidii in citrus and evaluated the effect of soil moisture on adult emergence. RESULTS A two-year field study showed that C. orchidii pupated in the soil from May to December in commercial citrus orchards. Chaetanaphothrips orchidii emergence was very low compared to other harmful thrips species in citrus. Using D/E traps, we demonstrated that the thrips emerged mainly from wet areas near drip irrigation emitters during the summer, and its emergence was strongly related to the soil water content. A laboratory experiment confirmed that C. orchidii did not emerge at RH below 70%, and its emergence peaked at 97% RH. CONCLUSIONS Our results have important implications for the sustainable management of C. orchidii because soil moisture is very low in Mediterranean citrus during summer, except in areas near drip irrigation emitters. Therefore, these and other potential high-humidity areas should be considered crucial targets to manage this pest in citrus during summer, reducing cost and labor.
Assessing stability and safety of loess slopes requires understanding their anisotropic deformation characteristics across various depths, which is influenced by external disturbances and water infiltration. A major challenge in this field has been lack of reliable detection equipment. Therefore, we developed a detection equipment for anisotropic deformation in slopes. This equipment operates on displacement control to simultaneously measure deformation and pressure at same depth in different directions, capturing anisotropic mechanical properties of loess. After fabrication and debugging, a precision calibration platform was constructed for detection equipment. Then, calibration tests showed a compression deformation precision of 0.28 % F & sdot;S and a compression force precision of 0.47 % F & sdot;S. Finally, field tests involved drilling two 150 mm diameter holes and performing in-situ mechanical property measurements at three depths, validating the equipment's effectiveness for anisotropic detection in loess. This equipment offers new method for exploring anisotropic deformation in slopes.
In today's fast-paced technological era, multifaceted technological advancements in our contemporary lifestyle are surging the use of electronic devices, which are significantly piling e-waste and posing environmental concerns. This stock of e-waste is expected to keep rising up to 50 mt year(-1). Formal recycling of such humongous waste is a major challenge, especially in developing nations. Mishandling of e-waste poses serious threats to human health, soil, and water ecosystem, threatening ecological and environmental sustainability. Complex matrix of resourceful materials comprising valuable metals like gold, silver, and copper, and hazardous substances such as lead, mercury, cadmium, and brominated flame retardants make its judicious management even more crucial. Potential toxic elements such as Pb, Cd, Cr, As, and Hg, as well as plastic/microplastics, nanoparticles are prevalent in components like batteries, cathode ray tubes, circuit boards, glass and plastic components which are known to cause neurological, renal, and developmental damage in humans. Effective and sustainable management of these requires a comprehensive understanding of their sources, environmental behavior, and toxicological impacts. This review explores potential approached for sustainable e-waste recycling (recycling of glass, plastic, rare earth metals, and base metals), and resource recycling through pyrometallurgy, hydrometallurgy, biometallurgy, biohydrometallurgy, bioleaching and biodegradation plastic alongside challenges and prospects.
Seedcorn maggot (Delia platura) is a globally distributed agricultural pest that feeds on the germinating seeds of economically important crops, including corn and beans. The larvae cause underground damage, which can lead to stand loss. For decades, D. platura has been managed using insecticide-coated seeds, but following the ban on neonicotinoid-coated corn, soy, and wheat seeds in New York State, this practice will no longer be available. Degree day models have been used to predict the emergence of the overwintering generation of agricultural pests since the late 1900s. However, the terminology used in the literature to distinguish degree day thresholds for first emergence and peak emergence is unclear, and previous reports of a 360 degree day emergence threshold did not align with field observations. In 2023, we captured the first emergence at four sites, and in 2024, we monitored adult D. platura at 25 sites in New York State. We observed the first adult emergence between 52 and 197 accumulated degree days (98 +/- 7 degree days, mean +/- 1 SE) using a biofix of January 1st, confirming that in New York State, D. platura emergence is earlier than previously reported values. Additionally, we note adult activity during December 2023 and January 2024, suggesting that warming winters may impact our ability to predict pest emergence. We propose future models should incorporate both degree day information and other regionally specific factors known to impact pests, including farm management, soil conditions, and landscape composition, for more accurate predictions.
Lunar-based equipment undertakes the task of movement and transportation in the construction of unmanned lunar base. In the process of moving, the mechanical legs of the equipment are influenced by the lunar soil with special mechanical properties. In order to avoid these uncertainties caused by the lunar soil and other lunar environmental conditions affecting the safety during the mission, a new robust control method with the form of sectionalized expression is proposed based on the dynamic model of the leg-soil system. Lyapunov second method is introduced to demonstrate that the proposed control method can maintain the stability of the leg-soil system successfully. In order to clarify the contact force in the dynamics model, CAS-1 lunar soil simulant that can accurately simulate real lunar soil is used in the calibration test to obtain the precise mechanical parameters. Simulation and experiment are also carried out to verify the proposed control method and the traditional control methods are introduced to make a comparison. Both the simulation and experiment results show that the proposed control method has a better control effect than traditional methods. The proposed method improves the accuracy by an average of 75.7% and 55.9% compared to the traditional methods and the error is limited to 0.2%. By maintaining the stability and accuracy of the leg-soil system, the stability of the lunar-based equipment is improved when performing construction tasks. This study lays the foundation for the construction of unmanned lunar base in advance.
In this study, greenhouse tests were conducted on 240 Fraxinus excelsior seedlings to investigate the simultaneous damage caused by thea pathogenic fungus and oomycetes. The experiment was performed under controlled conditions in the greenhouse of the Institute of Forest Research in S & eogon;kocin Stary (Poland). Three species of oomycetes were used for the experiment: Phytophthora plurivora, Phytophthora taxon hungarica, Phytophthora megasperma, and the fungus Hymenoscyphus fraxineus. Inoculations using the fungus were carried out on shoots and in plant pots in which the soil was mixed with the three Phytophthora species mentioned above, both simultaneously and separately, which made it possible to recognize the cumulative effect of the related plant infection. The aim of the study was to investigate the effect of phosphite-containing preparations on the health of common ash under conditions of threat to the roots by Phytophthora spp. and damage to the aerial parts of the plant by the fungus, as well as the possible occurrence of synergistic effects. Two types of protective preparations (Actifos and Phos60 of the nitrogen and potassium forms, respectively) were used. It was found that the inoculation of ash seedlings with the fungus H. fraxineus resulted in plant mortality, while the mixture of Phytophthora did not cause significant damage. It was confirmed that when pathogens coexist, a phenomenon occurs that leads to an acceleration in the development of disease symptoms and, thus, to plant mortality. In vitro tests confirmed the usefulness of phosphite preparations for the protection of ash seedlings.
Background Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) is a polyphagous, holometabolous and multivoltine insect that has spread from its supposed origin in sub-Saharan Africa to regions between 45 degrees north and 45 degrees south geographic latitude. It is considered an important economic pest worldwide, due to the direct damage caused to fruit, the high cost of its management and the restriction of the export of fruit from infested countries to markets in countries exempt from infestation. If no control measures are applied against this pest, C. capitata can destroy 50% of total production or 100% in preferred hosts. Currently, chemical insecticides are commonly applied to control medflies due to their rapid and satisfactory action; however, this method has many problems, including the destruction of non-target organisms, residues on agricultural products, environmental pollution and the development of insect resistance to insecticides. These negative effects have led scientists to search for more sustainable and ecological new control methods. Recently, great attention has been given to biological control, which has become a practical option for the ecological control of pests. Among biological control, entomopathogenic nematodes (EPNs) have great potential as control agents for soil-borne pests, like C. capitata. Main body This review focuses particularly on the control of C. capitata, specifically emphasizing the use of EPNs as biological control agents and their integration into integrated pest management. It is apparent from this study that species of Steinernema sp. and Heterorhabditis sp. are highly virulent against the late instars larvae and adults of C. capitata under controlled laboratory conditions, as well as these EPNs significantly reduce the population of this pest in semi-field and field trials. The pathogenicity of entomopathogenic nematodes against C. capitata was influenced by natural physicochemical and anthropogenic factors. The most effective EPNs were found to be compatible with certain mineral, chemical and biological products with insecticidal activity, indicating that these products can be combined with EPNs in the context of integrated control. Conclusion Based on this, EPNs have a promising future as an alternative to conventional chemicals against Mediterranean fruit fly.
Broken coal and rock (BCR) are an important component medium of the caving zone in the goaf (or gob), as well as the main filling material of fault fracture zone and collapse column. The compaction seepage characteristics of BCR directly affect the safe and efficient mining of coal mines. Thus, numerous laboratory studies have focused on the compaction seepage characteristics of BCR. This paper first outlines the engineering problems involved in the BCR during coal mining including the air leakage, the spontaneous combustion, the gas drainage, and the underground reservoirs in the goaf. Water inrush related to tectonics such as faults and collapse columns and surface subsidence related to coal gangue filling and mining also involve the compaction seepage characteristics of BCR. Based on the field problems of BCR, many attempts have been made to mimic field environments in laboratory tests. The experimental equipment (cavity size and shape, acoustic emission, CT, etc.) and experimental design for the BCR were firstly reviewed. The main objects of laboratory analysis can be divided into compression tests and seepage test. During the compaction test, the main research focuses on the bearing deformation characteristics (stress-strain curve), pore evolution characteristics, and re-crushing characteristics of BCR. The seepage test mainly uses gas or water as the main medium to study the evolution characteristics of permeability under different compaction stress conditions. In the laboratory tests, factors such as the type of coal and rock mass, particle size, particle shape, water pressure, temperature, and stress path are usually considered. The lateral compression test of BCR can be divided into three stages, including the self-adjustment stage, the broken stage, and the elastic stage or stable stage. At each stage, stress, deformation, porosity, energy, particle size and breakage rate all have their own characteristics. Seepage test regarding the water permeability experiment of BCR is actually belong to variable mass seepage. While the experimental test still focuses on the influence of stress on the pore structure of BCR in terms of gas permeability. Finally, future laboratory tests focus on the BCR related coal mining including scaling up, long term loading and water immersion, mining stress path matching were discussed.
Weed harrowing is commonly used to manage weeds in organic farming but is also applied in conventional farming to replace herbicides. Due to its whole-field application, weed harrowing after crop emergence has relatively poor selectivity and may cause crop damage. Weediness generally varies within a field. Therefore, there is a potential to improve the selectivity and consider the within-field variation in weediness. This paper describes a decision model for precision post-emergence weed harrowing in cereals based on experimental data in spring barley and nonlinear regression analysis. The model predicts the optimal weed harrowing intensity in terms of the tine angle of the harrow for a given weediness (in terms of percentage weed cover), a given draft force of tines, and the biological weed damage threshold (in terms of percentage weed cover). Weed cover was measured with near-ground RGB images analyzed with a machine vision algorithm based on deep learning techniques. The draft force of tines was estimated with an electronic load cell. The proposed model is the first that uses a weed damage threshold in addition to site-specific values of weed cover and soil hardness to predict the site-specific optimal weed harrow tine angle. Future field trials should validate the suggested model.
Background: an assessment of the environmental consequences of military actions was carried out from the perspective of the challenge to the peace formula. Methods: the information base of the research was the official resource of the Ministry of Environmental Protection and Natural Resources of Ukraine EkoZahroza and the materials of the State Environmental Inspectorate of the Polissia District regarding the calculations of the amount of damage caused by military actions. Results: it was determined that as of the 526th day of the military invasion (September 3, 2023), 34,119 units of Russian equipment caused the emission of 61,417 tons of pollutants into the atmosphere, the generation of 596,316 tons of waste, the spillage of oil products- 1,241 tons into the soil and 7 tons into the water. caused damage to the environment in the amount of 260.77 million UAH. The conducted surveys established that 93.8% of the surveyed schoolchildren and 100% of higher education students consider military actions on the territory of our state to be environmental crimes, among the components of the environment that suffer the most from military actions are soil and land resources and forest ecosystems. Conclusions: compared to the 127th day of the military invasion, the amount of destroyed military equipment increased by 6.9 times, emissions by 3.8 times, and waste by 6 times; losses- 3.8 times. There is an obvious need to assess all environmental risks caused by military actions, to apply an effective mechanism for compensation for damages and restoration of ecosystems. The optimistic attitude of the younger generation and youth regarding the possibility of improving the environmental situation in Ukraine after the end of military actions was noted. Measures to improve the state of the environment that were proposed by students testify to their environmental awareness and interest in environmental restoration, as well as the qualified training of ecologists by scientific and pedagogical workers.