The exploration of the Moon necessitates sustainable habitat construction. Establishing a permanent base on the Moon requires solutions for challenges such as transportation costs and logistics, driving the emphasis on In-Situ Resource Utilization (ISRU) techniques including Additive Manufacturing. Given the limited availability of regolith on Earth, researchers utilize simulants in laboratory studies to advance technologies essential for future Moon missions. Despite advancements, a comprehensive understanding of the fundamental properties and processing parameters of sintered lunar regolith still needs to be studied, demonstrating the need for further research. Here, we investigated the fundamental properties of lunar regolith simulant material with respect to the stereolithography-based AM process needed for the engineering design of complex items for lunar applications. Material and mechanical characterization of milled and sintered LHS-1 lunar regolith was done. Test specimens, based on ASTM standards, were fabricated from a 70 wt% (48.4 vol %) LHS-1 regolith simulant suspension and sintered up to 1150 degrees C. The compressive, tensile, and flexural strengths were (510.7 +/- 133.8) MPa, (8.0 +/- 0.9) MPa, and (200.3 +/- 49.3) MPa respectively, surpassing values reported in previous studies. These improved mechanical properties are attributed to suspension's powder loading, layer thickness, exposure time, and sintering temperature. A set of regolith physical and mechanical fundamental material properties was built based on laboratory evaluation and prepared for utilization, with the manufacturing of complex-shaped objects demonstrating the technology's capability for engineering design problems.
In-Situ Resource Utilization (ISRU) approaches hold significant importance in plans for space colonization. This work explores a different ISRU concept applying fast-firing, a robust and well-known industrial process, to Mars regolith simulant (MGS-1). The fast-fired specimens were compared to the ones obtained by conventional sintered under low heating rates. When the holding time at the firing temperature is longer than 15 min, fast-fired specimens exhibited higher density and flexural strength (> 35 MPa) than conventional sintering. For both processes, the bulk density values and the mechanical properties of the regolith compacts were enhanced with increasing dwell time. This was attributed to higher heating rates changing the densification/crystallization kinetics involving the basalt glass in the regolith composition. Specifically, high heating rate promotes sintering over crystallization. On these bases, fast firing can be considered a potential candidate for ISRU on Mars.
The soil environment has been considered capable of storing toxic substances without serious consequences for the inhabitants since plants are able to bioaccumulate pollutants without compromising their survival. The application of chemicals to increase soil productivity and the dumping of waste have worsened soil quality. Recently, following a greater awareness of the importance of monitoring the damage deriving from the consumption of contaminated crops for humans and of the protection of biodiversity, studies aimed at identifying the effects of soil contamination on terrestrial animals have increased considerably. Studies using field lizards as model organisms fit into this scenario; this research has shed light on the uptake, accumulation, and toxicity of soil pollutants on reptiles. This review summarizes data collected on lizards of the Podarcis genus, a group of resilient wild species capable of living in both pristine and anthropized areas; the data reveal that many of the effects recorded in lizard tissues at the molecular, biochemical, and histological levels are independent of the chemical composition of the contaminants and are mostly linked to the type of cellular response. Overall, these studies confirm Podarcis lizards as a good model system in ecotoxicological and cytotoxicological research, providing an accurate description of the effects of pollutants, clarifying the defense mechanisms activated in relation to different exposure routes and, finally, providing predictive information on the risks faced by other animals. Since the effects recorded in lizards have often also been observed in mammals, it can be concluded that the results obtained from studies on these animals can be translated to other terrestrial vertebrates, including mammals.
In-Situ Resource Utilisation (ISRU) is increasingly being seen as a viable and essential approach to constructing infrastructure for human habitation on the moon. Transporting materials and resources, from Earth to the Moon, is prohibitively expensive and not sustainable for long-term, large-scale development. Various fabrication technologies have been investigated in recent years, designed for extra-terrestrial exploration and settlement. This review presents a comprehensive study on the development of several sintering techniques of lunar regolith simulant to demonstrate its feasibility for ISRU on the moon. Various critical processing parameters are evaluated in pursuit of creating a structural material that can withstand the extreme lunar environment. Key outcomes are summarised and assessed to provide insight into their viability. Finally, current challenges are addressed and potential improvements, and avenues for further research, suggested.
The quest for viable construction materials for lunar bases has directed scientific inquiry towards the lunar in-situ resource utilization (ISRU), notably lunar regolith, to synthesize concrete. This study develops an innovative lunar high strength concrete (LHSC) utilizing lunar highlands simulant (LHS-1) and lunar mare simulant (LMS-1) as both precursors and aggregates within the concrete matrix. Mixtures were cured under the conditions simulating the lunar surface temperatures, enabling an evaluation of properties such as flowability, unit weight, compressive strength, modulus of elasticity, and microstructure patterns. Test results indicated that the LMS-1 mixtures exhibited a better flowability and higher unit weight as compared to LHS-1 counterparts. Moreover, the highest 28-day strength was 106.7 MPa and 98.7 MPa for LHS-1 and LMS-1 derived LHSC, respectively. Microstructure analysis revealed that under the identical simulant additions, LHS-1 mixes exhibited superior structural compactness with denser amorphous gels and fewer microcracks. In addition, it possessed a lower Si/ Al ratio and diffraction peak of calcite, along with a greater Ca/Si ratio and hump intensity of amorphous gel phases. The development of this cement-free LHSC, incorporating up to 80 % large-scale lunar materials in the total binder mass, plays a critical role in advancing ISRU on the Moon, thus boosting the viability and sustainability of future lunar construction and habitation while significantly reducing transportation and fabrication costs.
This review explores the development and potential applications of space concrete, a critical material for future extraterrestrial construction. Space concrete, adapted to withstand the harsh conditions of outer space, such as extreme temperatures, vacuum, microgravity, and radiation, offers a sustainable solution for building habitats and infrastructure on celestial bodies like the Moon and Mars. Emphasizing the innovative approaches in formulating space concrete, including the use of lunar and Martian soil as aggregates and the exploration of alternative binders to traditional water-based cement, this review highlights the significance of in-situ resource utilization (ISRU) and 3D printing technologies in advancing extraterrestrial construction. Additionally, the current designs and applications of space concrete structures are discussed. By providing a detailed analysis of the challenges faced in space construction and the latest advancements in material and structural research, the review underlines the pivotal role of space concrete in supporting space exploration and long-term habitat.
Leading national space exploration agencies and private enterprises are actively engaged in lunar exploration initiatives to accomplish manned lunar landings and establish permanent lunar bases in the forthcoming years. With limited access to lunar surface materials on Earth, lunar regolith simulants are crucial for lunar exploration research. The Chang'e-5 (CE-5) samples have been characterized by state-of-the-art laboratory equipment, providing a unique opportunity to develop a high-quality lunar regolith simulant. We have prepared a high-fidelity PolyU-1 simulant by pulverizing, desiccating, sieving, and blending natural mineral materials on Earth based on key physical, mineral, and chemical characteristics of CE-5 samples. The results showed that the simulant has a high degree of consistency with the CE-5 samples in terms of the particle morphology, mineral and chemical composition. Direct shear tests were conducted on the simulant, and the measured internal friction angle and cohesion values can serve as references for determining the mechanical properties of CE-5 lunar regolith. The PolyU-1 simulant can contribute to experimental studies involving lunar regolith, including the assessment of interaction between rovers and lunar regolith, as well as the development of in-situ resource utilization (ISRU) technologies. (c) 2024 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The discovery of antimicrobials with novel mechanisms of action is crucial to tackle the foreseen global health crisis due to antimicrobial resistance. Bacterial two-component signaling systems (TCSs) are attractive targets for the discovery of novel antibacterial agents. TCS-encoding genes are found in all bacterial genomes and typically consist of a sensor histidine kinase (HK) and a response regulator. Due to the conserved Bergerat fold in the ATP-binding domain of the TCS HK and the human chaperone Hsp90, there has been much interest in repurposing inhibitors of Hsp90 as antibacterial compounds. In this study, we explore the chemical space of the known Hsp90 inhibitor scaffold 3,4-diphenylpyrazole (DPP), building on previous literature to further understand their potential for HK inhibition. Six DPP analogs inhibited HK autophosphorylation in vitro and had good antimicrobial activity against Gram-positive bacteria. However, mechanistic studies showed that their antimicrobial activity was related to damage of bacterial membranes. In addition, DPP analogs were cytotoxic to human embryonic kidney cell lines and induced the cell arrest phenotype shown for other Hsp90 inhibitors. We conclude that these DPP structures can be further optimized as specific disruptors of bacterial membranes providing binding to Hsp90 and cytotoxicity are lowered. Moreover, the X-ray crystal structure of resorcinol, a substructure of the DPP derivatives, bound to the HK CheA represents a promising starting point for the fragment-based design of novel HK inhibitors.IMPORTANCEThe discovery of novel antimicrobials is of paramount importance in tackling the imminent global health crisis of antimicrobial resistance. The discovery of novel antimicrobials with novel mechanisms of actions, e.g., targeting bacterial two-component signaling systems, is crucial to bypass existing resistance mechanisms and stimulate pharmaceutical innovations. Here, we explore the possible repurposing of compounds developed in cancer research as inhibitors of two-component systems and investigate their off-target effects such as bacterial membrane disruption and toxicity. These results highlight compounds that are promising for further development of novel bacterial membrane disruptors and two-component system inhibitors. The discovery of novel antimicrobials is of paramount importance in tackling the imminent global health crisis of antimicrobial resistance. The discovery of novel antimicrobials with novel mechanisms of actions, e.g., targeting bacterial two-component signaling systems, is crucial to bypass existing resistance mechanisms and stimulate pharmaceutical innovations. Here, we explore the possible repurposing of compounds developed in cancer research as inhibitors of two-component systems and investigate their off-target effects such as bacterial membrane disruption and toxicity. These results highlight compounds that are promising for further development of novel bacterial membrane disruptors and two-component system inhibitors.
Bisphenol A (BPA) accumulates in the environment at lethal concentrations because of its high production rate and utilization. BPA, originating from industrial effluent, plastic production, and consumer products, poses serious risks to both the environment and human health. The widespread aggregation of BPA leads to endocrine disruption, reactive oxygen species -mediated DNA damage, epigenetic modifications and carcinogenicity, which can disturb the normal homeostasis of the body. The living being in a population is subjected to BPA exposure via air, water and food. Globally, urinary analysis reports have shown higher BPA concentrations in all age groups, with children being particularly susceptible due to its occurrence in items such as milk bottles. The conventional methods are costly with a low removal rate. Since there is no proper eco-friendly and cost-effective degradation of BPA reported so far. The phytoremediation, green -biotechnology based method which is a cost-effective and renewable resource can be used to sequestrate BPA. Phytoremediation is observed in numerous plant species with different mechanisms to remove harmful contaminants. Plants normally undergo several improvements in genetic and molecular levels to withstand stress and lower levels of toxicants. But such natural adaptation requires more time and also higher concentration of contaminants may disrupt the normal growth, survival and yield of the plants. Therefore, natural or synthetic amendments and genetic modifications can improve the xenobiotics removal rate by the plants. Also, constructed wetlands technique utilizes the plant's phytoremediation mechanisms to remove industrial effluents and medical residues. In this review, we have discussed the limitations and futuristic advancement strategies for degrading BPA using phytoremediation-associated mechanisms.
Since the landing on the lunar surface, the lunar regolith has begun to interact in different ways with landed elements, such as the wheels of a rover, astronaut suits, drills, and plants for extracting oxygen or manufacturing objects. Therefore, a strong effort has been required on Earth to fully characterise these kinds of interactions and regolith utilisation methods. This operation can only be performed by using regolith simulants, soils that are reproduced with the Earth's rocks and minerals to match the real features. This article presents the main guidelines and tests for obtaining the properties of a generic simulant in terms of composition, physical and mechanical properties, solid-fluid interaction, and thermal properties. These parameters are needed for the designing and testing of payloads under development for planned lunar surface missions. The same tests can be performed on lunar, martian, or asteroid simulants/soils, both in laboratory and in situ. A case study is presented on the lunar simulant NU-LHT-2M, representative of the lunar highlands. The tests are performed in the context of an in situ resource utilisation (ISRU) process that aims to extract oxygen from the lunar regolith using a low-temperature carbothermal reduction process, highlighting the main regolith-related criticalities for an in situ demonstrator plant.