In today's highly competitive and interconnected global market, economic achievement and prosperity are essential needs for every individual. However, in recent years, the science of sustainability has gained popularity due to mounting evidence of the damaging impacts of environmental issues. Lately, the expansion of petroleum industries and refineries has led to a substantial rise in the production of refinery oily waste. The treatment of such waste presents significant environmental challenges, necessitating the development of sustainable solutions. This review explores the latest advancements in biological processes for treating it, focusing on their efficacy and limitations. These processes are still facing challenges such as slow degradation rates, nutrient availability, and pollutant toxicity, which can hinder efficiency. To address these, efforts are being made to develop more viable biological treatments including exploration of microbial strains, optimizing process conditions, bioreactor systems, and integrating advanced bioremediation techniques. Potential applications of these processes across different contaminated sites are discussed along with commercially available technologies. Drawbacks related to bioprocess scale-up, cost-effectiveness, and regulatory constraints are also addressed. Additionally, it incorporates pertinent case studies that serve as illustrations of successful implementations of biological strategies. Ultimately, this sets the stage for practical bioremediation implementation as a solution for refinery waste management.
This paper investigates the impact dynamics of pile-soil interactions, focusing on the mechanisms of kinetic energy dissipation within these systems during vehicular impacts. The study aimed to quantitatively evaluate the force-displacement and energy-displacement responses of piles embedded in crushed limestone material through dynamic bogie testing. A three-dimensional, large-deformation, nonlinear finite element model was developed to enhance the analysis. The computational model integrated a damage-based, elastoviscoplastic soil model with an elastoplastic steel pile model, incorporating strain rate effects. A continuum, damage-based element-erosion algorithm is also employed to accurately simulate large soil deformations, representing a significant advancement in simulation capabilities. The proposed model was validated against physical impact test data, demonstrating a strong correlation with measured force-displacement and energy-displacement results. This model was subsequently utilized to investigate the effects of impact velocity and soil strength on the energy dissipation capacity of pile-soil systems during lateral vehicular impacts. Additionally, this study critically examined the limitations of conventional simulation methods, such as the Updated Lagrangian Finite Element Method (UL-FEM), in capturing the dynamic pile-soil interactions and large soil deformations involved in laterally-impacted pile-soil systems. The research provided fundamental insights into the mechanics of dynamic soil-structure interactions under impact loading, contributing significantly to the geotechnical design and analysis of soil-embedded vehicle barrier systems.