Soil-rock mixtures (SRM) from mine overburden form heterogeneous dump slopes, whose stability relies on their shear strength properties. This study investigates the shear strength properties and deformation characteristics of SRM in both in-situ and laboratory conditions. Total twelve in-situ tests were conducted on SRM samples with a newly developed large scale direct shear apparatus (60 cm x 60 cm x 30 cm). The in-situ moist density and moisture content of SRM are determined. Particle size distribution is performed to characterize the SRM in laboratory. The bottom bench has the highest cohesion (64 kPa) due to high compaction over time while the other benches have consistent cohesion values (25 kPa to33 kPa). The laboratory estimated cohesion values are high compared to in-situ condition. It is further observed that for in-situ samples, the moist density notably affects the cohesion of SRM, with cohesion decreasing by 3 to 5 % for every 1 % increase in moist density. At in-situ condition, internal friction angles are found to be 1.5 to 1.7 times compared to laboratory values which is due to the presence of the bigger sized particles in the SRM. The outcomes of the research are very informative and useful for geotechnical engineers for slope designing and numerical modeling purpose.