共检索到 47

Destructive earthquakes result in significant damage to a wide variety of buildings. The resulting damage data is crucial for evaluating the seismic resilience of buildings in the region and investigating urban resilience. Field damage data from 38 destructive earthquakes in Sichuan Province were collected, classified, and statistically analysed according to the criteria of the latest Chinese seismic intensity scale for evaluating building damage levels. Meanwhile, the construction features and seismic damage characteristics of these buildings were also examined. These results facilitated the development of a damage probability matrix (DPM) for various building typologies, such as raw-soil structures (RSSs), stone-wood structures (SWSs), brick-wood structures (BWSs), masonry structures (MSs), and reinforced concrete frame structures (RCFSs). The damage ratio was employed as the parameter for vulnerability assessment, and a comprehensive analysis was performed on the differences in damage levels among all buildings in various intensity zones and time frames. Furthermore, the DPMs were further refined by simulating additional data from high-intensity zones to more accurately represent the seismic resistance of existing buildings in multiple-intensity zones. Vulnerability prediction models were developed using the biphasic Hill model, which elucidates varying damage trends across different construction typologies. Finally, empirical fragility curves were established based on horizontal peak ground acceleration (PGA) as the damage indicator. This study is based on multiple seismic damage samples from various regions, accounting for the influence of earthquake age. The DPMs, representative of the regional characteristics of Sichuan Province, were developed for different building types. Furthermore, multidimensional vulnerability regression models and empirical fragility curves are established based on these DPMs. These models and curves provide a theoretical foundation for seismic disaster scenario simulations and the seismic capacity analysis of buildings within Sichuan Province.

期刊论文 2025-08-01 DOI: 10.1016/j.istruc.2025.109294 ISSN: 2352-0124

Current practice to model the occurrence of submarine landslides is based on methods that assess the potential of site-specific failures, all with the objective of providing elements to identify and quantify regional features associated to geohazards, before a project development takes place. Also, survey data to estimate parameters required to model submarine landslides show typically limited availability, mainly because of the cost associated to offshore surveying campaigns. In this paper, a probabilistic calibration approach is introduced using Bayesian statistical inference to maximize the use of available site investigation data, and to best estimate the occurrence of a marine landslide. For this purpose, a landslide model thought for its simplicity is used to illustrate the applicability and potential of the calibration methodology. The aim is to introduce a systematic approach to produce prior probability distributions of the model parameters, based on an actual integrated marine site investigation including geological, geophysical, and geomatics data, to then compare it with a posterior probability distribution of the same model parameters, but estimated after collecting in situ soil samples and testing them in the laboratory to produce the corresponding soil strength properties. This comparison allows to explore (a) the influence of the number of in situ samples, (b) the influence of a landslide factor of safety, and (c) the influence of the soil heterogeneity, into the likelihood of the occurrence of a marine landslide. The model parameters that are considered for calibration include the initial state of the submerged and saturated soil unit weight, the thickness of the soils' unit layers, the pseudo-static seismic coefficient, and the slope angle, while the soil undrained shear strength is considered as the reference parameter to conduct the calibration (i.e., to compare model predictions vs. actual observations). Results show the potential of the proposed methodology to produce landslide geohazard maps, which are needed for the planning and design of marine infrastructure.

期刊论文 2025-07-01 DOI: 10.1007/s10346-025-02486-y ISSN: 1612-510X

The study focuses on the architectural and structural analysis of the Justinian Bridge, an ancient stone arch bridge dating from the Byzantine era, located on Turkey's Sakarya (Sangarius) River. The research examines the structural configuration of the bridge and integrates its architectural background with data derived from comprehensive analyses. Experimental geophysical investigations were employed to assess the bridge's structural behavior, particularly considering the depths of the piers embedded in alluvial soil layers. The studies provided valuable data on the geometric and hydraulic properties of the bridge piers. The bridge's natural vibration frequencies and mode shapes were determined using a three-dimensional finite element model under four different boundary conditions. The results revealed that natural vibration frequencies are sensitive to soil properties. Time history analysis, incorporating ten sets of ground motion data, evaluated the bridge's dynamic response to earthquake loads. The damage distribution on the bridge body was determined and compared with the stresses obtained from the numerical analysis. The numerical results accurately show the damaged areas of the bridge. The findings provide valuable insights into the safety of historic stone arch bridges and serve as an essential reference for future conservation efforts.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04471 ISSN: 2214-5095

The displacements between segment rings are highly likely to occur in concealed creep fault areas. The dislocation of ring joint easily leads to the crushing of concrete around the bolt hole, which will become a potential safety hazard during tunnel service. For this problem, a composite Tenon was designed to improve the interaction at ring joint. It is necessary to carry out theoretical research to reveal the mechanical property of the ring joint. In this paper, a constitutive model of the Tenon was proposed based on specimen tests and numerical models. And the mechanical characteristics of the ring joint were investigated through prototype experiment and numerical simulation. The research results show that the composite Tenon is a flexible structure that can avoid the hard extrusion between the Tenon and the segments. The Tenon also has obvious protection effect on bolt and concrete around the handhole, which reserves more bearing space for the ring joint. These advantages are more conducive to dealing with potential risks such as earthquake, cyclic train loads, tunnel convergence deformation and uneven soil settlement during operation. The paper provides a theoretical basis for the application and promotion of the composite Tenon structure in the tunnel engineering.

期刊论文 2025-06-19 DOI: 10.1002/suco.70202 ISSN: 1464-4177

On February 6, 2023, two major earthquakes with magnitudes Mw = 7.7 and Mw = 7.6 struck southeastern Turkiye, causing catastrophic damage and loss of life across 11 provinces, including Malatya. This study focuses on documenting the geotechnical observations and structural damage in Dogansehir, one of the hardest-hit districts not only in Malatya but in the entire affected region. An overview of the-region's tectonic and geological background is presented, followed by an analysis of ground motion data specific to Malatya. A detailed examination of seismic data from stations near Dogansehir was provided to better understand the seismic demands during the earthquakes. The paper then provides insights into the geotechnical conditions, building characteristics, and a damage ratio map of Dogansehir. The influence of local tectonics and geology on the observed damage is analyzed, alongside an evaluation of the seismic performance of masonry and reinforced concrete structures. Dogansehir, located near the epicenters of the Kahramanmaras earthquakes, suffered major structural damage. This was due to the surface rupture occurring near the settlement areas, the establishment of the district centre on the alluvial soil layer and the deficiencies/errors in the building systems. Building settlements on or near active fault zones, as well as on soft soil, leads to serious consequences and should be avoided or require special precautions.

期刊论文 2025-06-15 DOI: 10.1016/j.jobe.2025.112266

This paper investigates the spatiotemporal dynamics and their changes of the southern limit of latitudinal permafrost (SLLP) and the lower limit of mountain permafrost (LLMP) in Northeast China, emphasizing the roles of climate change and human activities. Permafrost in this region is primarily distributed in the northern parts of the Da and Xiao Xing'anling mountain ranges and in the upper parts of the Changbai Mountains and at the summits of the Huanggangliang Mountains in the southern part of the Da Xing'anling Mountain Range. Permafrost degradation, ongoing since at least the local Holocene Megathermal Period (8.5-6.0 ka BP), has intermittently reversed during cooler climatic intervals but continues to exert significant impacts on regional environments, infrastructure stability, and carbon storage. Notably, the northward retreats of the SLLP since the mid-19th century underscore the sustained nature of this degradation, especially in southern patchy permafrost zones increasingly sensitive to warming and anthropogenic influences. LLMP variability is similarly shaped by a combination of climatic, hydrometeorological, ecological, and topographic factors. The distributions of SLLP and LLMP are further complicated by the presence of relict and sporadic permafrost, as well as the hydrothermal effects of vegetation and snow cover. Addressing the challenges of mapping and modeling boreal permafrost in Northeast China requires comprehensive field investigations, long-term in situ monitoring via station networks, and advanced numerical modeling. Emerging technologies, including satellite and airborne remote sensing (RS), geographic information systems (GIS), unmanned aerial vehicles (UAVs), surface geophysical methods, and big data analytics, offer new possibilities for enhancing permafrost monitoring and mapping. Integrating these tools with conventional field studies can significantly improve our understanding of permafrost dynamics. Continued efforts in monitoring, technological innovation, multidisciplinary collaboration, and international cooperation are essential to meet the challenges posed by permafrost degradation in a changing climate.

期刊论文 2025-05-14 DOI: 10.1002/ppp.2285 ISSN: 1045-6740

Large area civil engineering projects, such as offshore wind farms, require extensive soil investigations for detailed soil characterisations. Site-wide geotechnical soil units are commonly defined for simplification due to budgetary constraints. Consequently, practitioners rely on a limited number of costly laboratory tests and a set of semi-empirical CPT correlations, predominantly established based on research sands, for deriving sand parameters. A recent publication by the authors highlights some valid concerns about currently often applied idealisation when deriving strength parameters of natural sands and presents some possible pathways to address the limitations with a grading curve parameter (d10+d30). In the current paper, the size of the original laboratory test database is increased to improve the robustness of the methods. In addition, the database is used to also explore the potential of the d10+d30-parameter to improve estimations of drained stiffness parameters. However, since the current database mainly consists of relatively fine sands with varying fines content, a previously published database of much coarser clean sands is applied to investigate the limitations of the presented methods. Finally, a new independent trial database is collected to demonstrate the performance of the new methods for estimating drained strength and stiffness parameters compared with commonly applied industry-acknowledged methods. Even though limitations of the presented methods are identified for coarser clean sands, significantly improved reliability is demonstrated when deriving drained strength and stiffness parameters of relatively fine and slightly silty to very silty siliceous offshore sands.

期刊论文 2025-05-04 DOI: 10.1080/1064119X.2024.2358485 ISSN: 1064-119X

To identify the species of Collembola that harm Morchella and to screen for pesticides that are effective in controlling these pests with minimal inhibition of mycelial growth, a five-point sampling method was used to investigate the population of Collembola and its damaging effects on Morchella and to analyze its spatial distribution in the soil. The indoor control efficacy of ten insecticides was determined using the mushroom disc immersion method and the pesticide film method. The most effective insecticides were then selected for field testing. The effect of the best-performing field pesticides on the mycelial growth of Morchella was measured using the Petri dish mycelial growth rate method, and pesticide residues were detected using chromatography. The survey revealed that in three Morchella greenhouses, the average Collembola population was 220,333 individuals/m3. The spatial distribution of Collembola was uniform. The collected Collembola specimens were identified as Oligaphorura ursi from the family Onychiuridae. Through the lab and field screening of pesticides, it was found that 40% phoxim EC, 1.8% abamectin EC, 2.5% lambda-cyhalothrin EW, and 4.5% beta-cypermethrin EC had the best efficacy. Meanwhile, residues of these four pesticides were not detected. Mycelial growth inhibition experiments showed that 2.5% lambda-cyhalothrin EW, 1.8% abamectin EC, and 4.5% beta-cypermethrin EC exhibit low inhibition of mycelial growth and can be used as control pesticides for Collembola on Morchella, providing a technical reference for the green pesticide control of Collembola on Morchella in the study region.

期刊论文 2025-04-27 DOI: 10.3390/horticulturae11050471

Triggered by continuous heavy rainfall, a catastrophic large-scale high-locality landslide occurred in Hengshanbei mountain slope of Shangxi Village, Longchuan County, Guangdong Province, China, on June 14, 2022, at 12:10 (UTC + 8). The landslide had an estimated volume of about 1.45 x 105 m3 and resulted in severe damage to the region. To investigate the causative mechanisms of this landslide, a comprehensive study was conducted, involving geological and hydrological surveys of the research area, combined with field investigations, satellite imagery, drone photography, data analysis of rainfall and landslide displacement monitoring, and laboratory experiments. The research focused on analyzing the process of landslide formation and development, trigger factors, destruction characteristics, and instability mechanisms. Additionally, the study employed the Mohr-Coulomb strength theory to explain stress variations during the landslide process. Findings indicated that: (1) the slope soil structure was loose with well-developed pores, mainly composed of kaolinite with strong water absorption properties, causing softening and disintegration of the soil when encountering water, resulting in reduced cohesion and internal friction angle, and overall poor soil properties; (2) continuous heavy rainfall infiltrated the slope through soil pores and eroded channels, increasing pore water pressure and reducing effective stress, subsequently reducing anti-sliding force and increasing sliding force; as well as (3) unfavorable terrain conditions, such as high landslide starting point and high-locality, significant height, and steep slope, lead to landslides running farther and being of larger scale. The study further highlighted that the intrinsic properties of the slope soil were the decisive internal cause of the landslide, while continuous heavy rainfall and adverse terrain were external triggering factors. These findings provide essential insights for understanding and preventing similar landslide disasters.

期刊论文 2025-04-01 DOI: 10.1007/s11069-025-07158-7 ISSN: 0921-030X

The widespread distribution of riprap in estuarine mudflats has brought significant challenges to the penetration construction of steel casings. To reveal the effects of casing length, diameter and wall thickness on the stress and deformation, as well as the deformation characteristics and mechanical behaviors of the steel casing during the sinking process, the paper utilizes finite element method to construct a three-dimensional numerical model of the collision between steel casings and riprap in mudflat. The research results indicate that longer steel casing has better crushing effect on the riprap, smoother deflection curve of the casing body and smaller deformation at the casing end under the same casing diameter and wall thickness conditions. Under the same casing length and wall thickness conditions, the steel casing with a larger diameter has a better crushing effect on the riprap and smaller deformation at the casing end. As the casing diameter increases, the stress values of S11 and S33 in the soil at the casing end gradually decrease, and the range of stress concentration gradually increases. This study can provide a theoretical basis for the design and construction of steel casings in the riprap environment of the mudflat near the estuaries.

期刊论文 2025-03-07 DOI: 10.1038/s41598-025-92668-4 ISSN: 2045-2322
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共47条,5页