共检索到 1

The present study proposes a rapid visual screening methodology for multi-hazard vulnerability assessment (termed as MH-RVS) of reinforced concrete (RC) buildings in the Indian Himalayan region considering earthquakes, debris flow, debris flood, and soil subsidence. An extensive field survey of 1200 buildings was conducted in three hill towns situated in the Northwestern Indian Himalayan region to identify prevalent multi-hazard vulnerability attributes. The presented MH-RVS methodology is statistically developed based on the information obtained from the current field survey and existing post-hazard reconnaissance studies. The proposed methodology effectively addresses the concern of underpredicting the expected damage states of RC buildings situated in hilly regions subjected to multi-hazard scenarios when they are assessed using RVS methodologies of seismic vulnerability assessment. Further, a simplified MH-RVS form is developed to collect field data and conveniently segregate the RC buildings based on their expected damage state under multi-hazard scenarios involving earthquakes, debris flow, debris flood, and soil subsidence. Stakeholders and decision-makers can use the proposed MH-RVS methodology to assess the perceived vulnerability of RC buildings in the Indian Himalayan region and devise timely strategies for structural strengthening and risk mitigation.

期刊论文 2024-12-09 DOI: 10.1007/s10518-024-02056-y ISSN: 1570-761X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页