共检索到 2

Aerosol-cloud interactions, also known as aerosol indirect effect (AIE), substantially impact rainfall frequency and intensity. Here, we analyze NEX-GDDP, a multimodel ensemble of high-resolution (0.25 degrees) historical simulations and future projections statistically downscaled from 21 CMIP5 models, to quantify the importance of AIE on extreme climate indices, specifically consecutive dry days (CDD), consecutive wet days (CWD), and simple daily intensity index (SDII). The 21 NEX-GDDP CMIP5 models are classified into models with reliable (REM) and unreliable (UREM) monsoon climate simulated over India based on their simulations of the climate indices. The REM group is further decomposed based on whether the models represent only the direct (REMADE) or the direct and indirect (REMALL) aerosol effects. Compared to REMADE, including all aerosol effects significantly improves the model skills in simulating the observed historical trends of all three climate indices over India. Specifically, AIE enhances dry days and reduces wet days in India in the historical period, consistent with the observed changes. However, by the middle and end of the 21st century, there is a relative decrease in dry days and an increase in wet days and precipitation intensity. Moreover, the REMALL simulated future CWD and CDD changes are mostly opposite to those in REMADE, indicating the substantial role of AIE in the future projection of dry and wet climates. These findings underscore the crucial role of AIE in future projections of the Indian hydroclimate and motivate efforts to accurately represent AIE in climate models. We investigate the impacts of aerosol on India's wet and dry climate. High-resolution downscaled CMIP5 models were used to calculate extreme indices like CDD (consecutive dry days), CWD (consecutive wet days), SDII (precipitation intensity). From the group of 22 models, 12 reliable models were chosen based on their fidelity to the observations. Amongst the reliable models, certain models incorporate only aerosol-radiation interaction (REMADE), while others have both aerosol-radiation and aerosol-cloud interaction (REMALL). We found that the simulated trends in the REMAll were similar to the observed trends. In the current period (1975-2005), the aerosol-cloud interactions led to the reduction in rainfall (both frequency and intensity wise) and enhanced the dry days, however in the future projections, the reduction in aerosol emissions leads to a wetter climate (increase in wet days and rainfall intensity) over India.

期刊论文 2023-08-01 DOI: 10.1029/2022EF003266

The decreasing trend in rainfall in the last few decades over the Indo-Gangetic Plains of northern India as observed in ground-based observations puts increasing stress on groundwater because irrigation uses up to 70% of freshwater resources. In this work, we have analyzed the effects of extensive irrigation over the Gangetic Plains on the seasonal mean and intra-seasonal variability of the Indian summer monsoon, using a general circulation model and a very high-resolution soil moisture dataset created using extensive field observations in a state-of-the-art hydrological model. We find that the winter-time (November-March) irrigation has a positive feedback on the Indian summer monsoon through large scale circulation changes. These changes are analogous to a positive North Atlantic Oscillation (NAO) phase during winter months. The effects of the positive NAO phase persist from winter to spring through widespread changes in surface conditions over western and central Asia, which makes the pre-monsoon conditions suitable for a subsequent good monsoon over India. Winter-time irrigation also resulted in a reduction of low frequency intra-seasonal variability over the Indian region during the monsoon season. However, when irrigation is practiced throughout the year, a decrease in June-September precipitation over the Gangetic Plains, significant at 95% level, is noted as compared to the no-irrigation scenario. This decrease is attributed to the increase in local soil moisture due to irrigation, which results in a southward shift of the moisture convergence zone during the active phase of monsoon, decreasing its mean and intraseasonal variability. Interestingly, these changes show a remarkable similarity to the long-term trend in observed rainfall spatial pattern and low-frequency variability. Our results suggest that with a decline in the mean summer precipitation and stressed groundwater resources in the Gangetic Plains, the water crisis could exacerbate, with irrigation having a weakening effect on the regional monsoon.

期刊论文 2019-09-01 DOI: 10.1007/s00382-019-04691-7 ISSN: 0930-7575
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页