Structural damages occurred during any earthquake arise not only from structural design flaw but also from the variability of sub-base soil behavior and the foundation system. For this reason, structure-soil-pile interaction has an important place in evaluating the behavior of a structure under dynamic effects. Bored pile application, which is one of the deep foundation systems, is a widely used method in the world to transfer the loads coming from the structure to the ground safely in problematic grounds. For this reason, in pile foundation system designs, how bored pile foundation systems will affect the structural design under earthquake loads is considered an important issue. In particular, how diagonally braced steel structures with piled raft foundation systems will behave under earthquake effects has been evaluated as a subject that needs to be examined. For this reason, this situation was evaluated as the main purpose of this study. The effect of the bored pile systems designed in different orientations on the behavior of diagonally braced steel structures during an earthquake under kinematic and inertial effects was investigated in detail within the scope of this study. Numerical analyses, based on data from shake table experiments on a scaled superstructure, examine various pile design scenarios. Experimental base shear force measurements informed the development of numerical scenarios, which varied pile lengths and inter-pile distances while maintaining constant pile diameters. This study analyzed the kinematic and inertial effects on the piles, offering insights into their structural behavior under seismic conditions. The increase in pile length and the increase in the distance between the piles caused a significant increase in the bending moment and shear force, which have an important place in pile design.
Both inertia and kinematic pile-soil-pile interaction should be considered during the seismic response analysis of a pile group. This study established a novel mathematical framework which is capable of considering the coupling of inertia and kinematic interactions, the complex constitutive of unsaturated soil, and the secondary wave effect within a pile group. By comparisons with existing analytical and numerical answers, the validity and advancement of the proposed model is exhibited. The main findings can be summarized as: (1) Simplified soil constitutive models, such as the BDWF model and the saturated soil model, would fail to reveal the authentic response of pile group. The saturation and porosity would significantly influence the kinematic pile-pile response factor, while the inertia pile-pile response factor is less influenced; (2) increases of pile numbers within a pile group would impose severe fluctuations on the kinematic response of the pile group, whereas the increase of pile spacing would significantly diminish this effect; (3) secondary wave effect should never be overlooked in seismic analysis but can be neglected in inertia analysis.
Previous earthquake events indicate that pile foundations in liquefiable soils are vulnerable to damage due to the coupling of inertial and kinematic effects. Inclined piles are widely applied in structures located in liquefiable soils, but few investigations of the coupling of the superstructure-pile inertial and soil-pile kinematic effects have been conducted. To address this gap, this study adopted a three-dimensional (3D) numerical model to investigate the coupling of inertial and kinematic effects in pile foundations with different inclination angles. The pile head bending moment was employed to represent the pile response, while the soil surface displacement and structure acceleration were utilized to quantify the kinematic and inertial effects. The role of the inclination angle on the interactions between inertial and kinematic effects is herein considered for pile groups. In particular, the inertial effect significantly influences the behavior of pile groups with larger inclination angles, whereas the kinematic effect predominates the pile head moment in vertical pile groups. In this paper, the influence of the pile inclination angle, superstructure configuration, and earthquake intensity on the interactions was investigated. The principal findings revealed that the kinematic effect dominates in the vertical pile group irrespective of the properties of the superstructure, while the inertial effect plays a significant role in the response of the inclined pile groups, especially for superstructures with considerable heights. Inclined piles are vulnerable to damage due to the interaction of inertial and kinematic effects during earthquakes. This study conducted a series of three-dimensional (3D) finite-element simulations to investigate the interaction of inertial and kinematic effects in pile foundations with different inclination angles. The influence of pile inclination angle, superstructure height, and earthquake characteristics was investigated. In current practices, various codes and pseudostatic methods have been adopted to sum a percentage of the inertia-induced bending moment and another percentage of the kinematic-induced bending moment. This study indicates that under certain conditions, the simple summing of the bending moment induced by the inertial and kinematic effects could be inaccurate. The present study identified several factors that influence the interaction of inertial and kinematic effects on piles with different inclination angles. The inclined piles in liquefied soil, especially for supporting tall and heavy superstructure, attention should be given to the influence of inertial effect on the pile head bending moment.
Pile -supported wharves in liquefiable soils are prone to severe damage during earthquakes. This study employs seismic isolation techniques to adapt for wharf construction, evaluating their seismic performance under lateral ground deformation due to liquefaction. Experimental and numerical analyses are necessary for confirming the efficiency of the isolation in decreasing the requirements for pile -supported wharves. The study initially tests two pile -supported wharves under geotechnical centrifuge conditions, one reinforced by isolation bearings and the other without. The objective is to simulate the force characteristics of isolated pile -supported wharves in liquefiable soils and to analyze the impact of isolation on reducing the seismic response of these wharves. Subsequent analysis delves into the interaction between inertia and kinematics for two types of pile -supported wharves, providing crucial insights. The development of plastic hinges for two kinds of pile -supported wharves under inertia and kinematics is also analyzed. Quantifiable thresholds are established to study the influence of isolation on the resistance of wharves to seismic disruptions, thus preventing pile -supported wharves damage.
Snow, as a fundamental reservoir of freshwater, is a crucial natural resource. Specifically, knowledge of snow density spatial and temporal variability could improve modelling of snow water equivalent, which is relevant for managing freshwater resources in context of ongoing climate change. The possibility of estimating snow density from remote sensing has great potential, considering the availability of satellite data and their ability to generate efficient monitoring systems from space. In this study, we present an innovative method that combines meteorological parameters, satellite data and field snow measurements to estimate thermal inertia of snow and snow density at a catchment scale. Thermal inertia represents the responsiveness of a material to variations in temperature and depends on the thermal conductivity, density and specific heat of the medium. By exploiting Landsat 8 data and meteorological modelling, we generated multitemporal thermal inertia maps in mountainous catchments in the Western European Alps (Aosta Valley, Italy), from incoming shortwave radiation, surface temperature and snow albedo. Thermal inertia was then used to develop an empirical regression model to infer snow density, demonstrating the possibility of mapping snow density from optical and thermal observations from space. The model allows for estimation of snow density with R-CV(2) and RMSECV of 0.59 and 82 kg m(-3), respectively. Thermal inertia and snow density maps are presented in terms of the evolution of snow cover throughout the hydrological season and in terms of their spatial variability in complex topography. This study could be considered a first attempt at using thermal inertia toward improved monitoring of the cryosphere. Limitations of and improvements to the proposed methods are also discussed. This study may also help in defining the scientific requirements for new satellite missions targeting the cryosphere. We believe that a new class of Earth Observation missions with the ability to observe the Earth's surface at high spatial and temporal resolution, with both day and night-time overpasses in both optical and thermal domain, would be beneficial for the monitoring of seasonal snowpacks around the globe.