Hurricane Otto caused sequential changes in tropical soil microbiota over 5 years.Acidobacteria were critical early decomposers of deposited canopy debris for 3 years.Complex C degrading fungi were critical later decomposers of debris starting at 4 years.A suite of C, N and microbial indicators should prove valuable for forest managers.Hurricanes cause significant damage to tropical forests; however, little is known of their effects on decomposition and decomposer communities. This study demonstrated that canopy debris deposited during Hurricane Otto stimulated sequential changes in soil carbon (C) and nitrogen (N) components, and decomposer microbial communities over 5 years. The initial response phase occurred within 2 years post-hurricane and appeared associated with decomposition of the labile canopy debris, suggested by: increased DNA sequences (MPS) of the Acidobacterial community (as common decomposers of labile plant material), decreases in total organic C (TOC), increased biomass C, respiration, and NH4+, conversion of organic C in biomass, and decreased MPS of complex organic C decomposing (CCDec) Fungal community. After 3 years post-hurricane, the later response phase appeared associated with decomposition of the more stable components of the canopy debris, suggested by: increased MPS of the Fungal CCDec community, TOC, stabilized Respiration, decreased Biomass C, the return to pre-hurricane levels of the conversion of organic C to biomass, and decreased MPS of Acidobacterial community. These changes in the microbial community compositions resulted in progressive decomposition of the hurricane-deposited canopy material within 5 years, resulting several potential indicators of different stages of decomposition and soil recovery post-disturbance.
This paper uses a simplified assessment method based on the excavated-induced ground movement to examine the coupling effect between adjacent excavations during construction. The finite element numerical model is established to simulate and analyze the deformation of adjacent excavations at each stage of construction. Distinct construction sequences are employed to explore the dissimilarities in the deformation characteristics of the surrounding soil and envelope after excavation. The results indicate that when adjacent excavations are excavated simultaneously, their interactions affect the soil and envelopes' deformation. The maximum ground settlement occurs at a certain distance from the edge of the excavation. As the excavation depth increased, the enclosure exhibited a more pronounced deformation. The deformation of the enclosure structure can be significantly inhibited by the spatial effect at the corners of the excavation. When adjacent pits are constructed in different construction sequences, the enclosure structure on the first constructed excavation often experiences greater deformation than on the later constructed excavation.
This study investigates the pore water pressure (PWP) behavior of soil around large-diameter open-ended thin- walled piles (LOTPs) during impact driving using a large deformation finite-element method. A comparative analysis of the PWP accumulation curves of the soil inside, outside, and below the LOTP tips with different diameters and wall thicknesses during impact driving is conducted under the same hammering solution. The PWP development is dependent on the absolute distance from the pile surface to the location of the soil and the dimensions of the LOTP. The excess pore water pressure (EPWP) accumulates and gradually dissipates, and its level decreases with increasing pile diameter. However, a negative excess pore water pressure (Ne-EPWP) is identified during hammering. Based on the above findings and analyses, a PWP prediction equation for LOTP during driving is proposed, and the predicted curves are compared with the numerical results. The influence of PWP accumulation after penetration of 2d (d is the LOTP internal diameter) does not increase significantly. This equation can provide the initial distribution field of PWP in saturated clay for LOTPs, thereby facilitating pile drivability analyses.
The computational cost of discrete element modelling is high owing to the limitations of particle size and contact in fibre modelling. This paper proposes an optimised discrete element method (DEM) for a hybrid model of soil and fibres based on the fibre influence range. First, a relative velocity state function is established based on the relative motion state between the fibres and soil particles under undrained cyclic loading. Subsequently, the influence range of the fibres is determined using the relative velocity function based on the first few cycles of the undrained cyclic loading numerical tests. Cluster and clump models of the fibre are then generated based on the influence range of the fibre. Finally, a symmetrical shape of the optimised model is developed by extracting the distribution length of the edge curve of the influence range along the vertical direction of the axis. In this study, the proposed optimised DEM was validated through a series of undrained cyclic loading numerical tests on fibrereinforced soil. The results of the optimised model were highly consistent with those of the traditional model, and the computational time was significantly reduced. The cyclic loading timing for determining the range of influence of the fibre was analysed. The optimised model based on the influence range of the 15th cycles not only restored almost the same results but also saved the calculation cost by nearly eight times. The optimised model established based on the influence range after the 15th cycles had a slight influence on the results. In addition, the applicability of the optimised model is discussed. This paper provides new insights into the establishment of a hybrid model of soil and fibres.
Microorganisms cause microbiologically influenced corrosion, for the prevention of which bactericide inhibitors are used. The aim of the work was to study in vitro the sensitivity of SRB Desulfovibrio oryzae NUChC SRB1 to different concentrations of dimethyl sulfoxide (DMSO), and evaluate the indicators of the microbial corrosion of steel induced by this bacterium in the presence of the pharmaceutical drugs DMSO and paracetamol. The sensitivity of SRB D. oryzae to 1-100% DMSO (v/v) was studied via the dilution method in Postgate's C liquid medium. The corrosion activity of D. oryzae against steel 3 was investigated under DMSO and paracetamol treatment at a final concentration of 45% (v/v) and 0.2% (w/v), respectively, according to the ability of bacteria to form a biofilm on the surface of the steel samples (via the crystal violet method) and the effect on the corrosion rate (via the gravimetric method). It was revealed that DMSO affected D. oryzae NUChC SRB1 and exhibited bactericidal properties (at a concentration range of 10-100%, v/v) and antibiofilm properties (at a concentration of 45%, v/v). Despite its antibiofilm properties confirmed by the reduction in bacterial biofilm mass, anticorrosion features were not observed in the model 35-day conditions of the microbial corrosion of steel in an anaerobic environment with bacterial sulfate reduction. Paracetamol (0.2%, w/v) did not affect biofilm formation by SRB under these conditions, and significantly contributed to an increase in the rate of the microbial corrosion of steel. The prospect of further research is to assess the effect of DMSO and paracetamol on the indicators of microbial corrosion induced by SRB under the influence of the concentrations of these compounds found in wastewater, to clarify the possible additional causes of damage to the equipment of treatment plants. Further research should also be directed at investigating the antimicrobial properties of complexes of compounds with DMSO, which should be considered as an ecological solution to the problem of microbiologically influenced corrosion prevention.
This article presents a review of the equipment used in the process of determining the mechanical strength of soil, in particular with regards to the vertical loads applied. Here, devices incorporating the bevameter approach, i.e. medium and large-scale testers, are discussed. The bevameter technique is described in detail, along with the most common mathematical models relating to the vertical pressure applied to the soil and its compaction. The paper also highlights important phenomena for this type of experiment, such as the scale effect, wall effect, multipass effect, and slip sinkage effect. The article presents the reasons for which plate testers are currently the most commonly used tester type for soil penetration tests for the purpose of terramechanics, including the Next Generation NATO Reference Mobility Model that is currently under development. Investigations towards the influence of the penetration rate on soil penetration are also addressed. Furthermore, the authors also present a selection of their own results of currently ongoing research on the subject of potential influence of the plate grouser on plate sinkage. The results already obtained have made it possible to identify phenomena that are not taken into account in the current research methods, in turn resulting in the development of an innovative plate tester for investigating the sinkage of the running gear components of machines and vehicles in fragmented media.
Introduction The phenomenon in which the damage of plant diseases is suppressed by continuous cropping is defined as suppressiveness and the development of suppressive soils and key beneficial microorganisms have been identified through various previous studies. However, no studies have been conducted on microbial communities related to disease occurrence before the initial occurrence of diseases in crop monoculture.Methods We aimed to investigate the ecological modifications of pathogen population density in soil, disease occurrence rate, and microbiota community shifting during ginseng monoculture to better understand the tripartite social relationships in the monoculture system. To achieve the study's objectives, a long-term monoculture of ginseng was established. The microbial diversity and community structure were analyzed using high-throughput sequencing, and the pathogen population density and disease occurrence rate were determined using qPCR and observation.Results and discussion The results showed that the initial rhizosphere bacterial community of ginseng had already collapsed before the development of the root rot disease. The study also identified the crucial role of soil-borne pathogens in causing disease and the loss of initial keystone taxa populations in the early stages of monoculture. Our study revealed a novel aspect of soil microbiota dynamics during ginseng monoculture, with seven distinct microbes (Beijerinckiaceae, Comamonadaceae, Devosiaceae, Rhizobiaceae, Sphingobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae) participating in soil nitrogen metabolism as an 'initial community' that regulates root rot disease through nutritional competition. The findings contribute to ecological research on disease-suppressiveness soil, disease management, and sustainable agriculture.
Since 2002, ash dieback caused by the invasive fungus Hymenoscyphus fraxineus has been observed in Germany. The pathogen and its associated symptoms have fatal consequences for the vitality and survival of European ash (Fraxinus excelsior L.), an economically and ecologically important tree species. This study analyses the ash monitoring results of eleven intensive monitoring plots of the FraxForFuture research network distributed across Germany and focuses on within-stand differences of symptoms in dependence of small-scale site and tree properties. A cohort of 1365 ash trees was surveyed six times over three years, testing and applying a summer and a winter version of a nationally standardised ash dieback assessment key. The main disease symptoms (crown dieback and basal lesions) were more pronounced in areas with higher ash density, in edaphically moist areas (hydromorphic soils), on younger/smaller ash trees, and generally increased over time. However, the trend over time differed between single plots. In case of considering only the surviving part of the ash populations, crown condition even improved in 6/11 plots, indicating a selection process. Large basal lesions at the beginning of the observation period were a very good predictor for deadfall probability, especially on trees with lower stem diameter. Generally, ash dieback related symptoms at stem and crown were highly correlated. Silvicultural management practice in the past that actively pushed ash towards the moister end of its water demand spectrum has to be questioned in the light of ash dieback. Cost-intensive ash re-cultivation in the future-possibly with less dieback-susceptible progenies-should avoid pure ash stands and hydromorphic soil conditions.
Visual inspection and hammering tests are the standard methods for inspecting shield tunnels. They can provide a comprehensive judgment based on the engineer's past experience and conditions, such as cracking, water leakage, and structural details. However, one problem with this method is that the inspection results are highly dependent on the skills of the inspector. To overcome this limitation, it is necessary to develop an easy and quantitative inspection method for shield tunnels. The influence line (IL), which is the response at a specific point due to a unit load that is moved along the target structure, can be used for evaluating the soundness of the infrastructure. Therefore, in this study, we propose a method for determining the IL that can be applied when the speed of a passing train changes. The IL is determined by measuring the displacement due to the train load using a MEMS accelerometer. Finally, to verify the validity of the determined IL, a finite element analysis is performed. Good agreement is found between the ILs determined experimentally and analytically when the soil spring constant is 18 times higher than the nominal value, with a correlation coefficient of 0.98.
Arctic regions are highly impacted by the global temperature rising and its consequences and influences on the thermo-hydro processes and their feedbacks. Theses processes are especially not very well understood in the context of river-permafrost interactions and permafrost degradation. This paper focuses on the thermal characterization of a river-valley system in a continuous permafrost area (Syrdakh, Yakutia, Eastern Siberia) that is subject to intense thawing, with major consequences on water resources and quality. We investigated this Yakutian area through two transects crossing the river using classical tools such as in-situ temperature measurements, direct active layer thickness estimations, unscrewed aerial vehicle (UAV) imagery, heat transfer numerical experiments, Ground-Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT). Of these two transects, one was closely investigated with a long-term temperature time series from 2012 to 2018, while both of them were surveyed by geophysical and UAV data acquisition in 2017 and 2018. Thermodynamical numerical simulations were run based on the long-term temperature series and are in agreement with river thermal influence on permafrost and active layer extensions retrieved from GPR and ERT profiles. An electrical resistivity-temperature relationship highlights the predominant role of water in such a complicated system and paves the way to coupled thermo-hydro-geophysical modeling for understanding permafrost-river system evolution.