共检索到 2

The disintegration of expansive stiff clay will cause irreversible damage and deterioration of mechanical properties of the soil. The latest studies show that the disintegration is related to the swelling capacity of soil. In this study, a series of hydration disintegration tests and swelling pressure tests were performed on compacted Nanning expansive stiff clay samples with different initial water contents and dry densities. The observed disintegration process of all samples could be divided into initial, rapid and residual disintegration stages, among which the rapid stage dominated the whole process. By introducing relevant indicators to quantify the disintegration process, it was found that at a given dry density, the average disintegration rate of the sample decreased with increasing initial water content; while at a given water content, it decreased with increasing initial dry density. Such phenomena coincided well with the obtained evolution of swelling pressure at different initial water contents and dry densities. Based on these findings, the expansion-disintegration interaction mechanism of expansive stiff clay was finally analyzed from the perspectives of microstructure and hydration cracking. The initial conditions of the compacted samples determine the volume of inter-aggregates pores and thus the water transfer rate in soils, which affects the formation of hydration cracks. The cracking is induced by tension failure due to the expansion gradient formed during the hydration of sample, destructing the soil integrity to facilitate the disintegration. The disintegration, in turn provides preferential water infiltration channels to accelerate further soil expansion and hydration cracking. Such interactions proceeded until the completion of sample disintegration.

期刊论文 2024-11-01 DOI: 10.1007/s10064-024-03943-z ISSN: 1435-9529

Using traditional materials to improve the permeability of silty soils can cause irreversible damage to the environment. Therefore, it is necessary to develop environmentally friendly biopolymers, such as xanthan gum (XG), to replace traditional materials to improve resistance to water erosion by reducing the permeability coefficient. In this study, a series of permeability tests and scanning electron microscope (SEM) tests were conducted on xanthan gum-improved silty soil (XGS). The variations in the permeability coefficient of XG-improved silty soil and the effects of initial dry density, XG-soil ratio, and curing age on the permeability were investigated. Test results show that the permeability coefficient of XGS decreased with the increase of initial dry density, XG-soil ratio, and curing age. With increasing the initial dry density, soil particles compressed against each other, decreasing the actual water flow crossing area, which leads to a decrease in the permeability coefficient. With the increase of the XG-soil ratio, the fill-blocking effect of xanthan gum with hydrogel connections becomes more and more obvious, which leads to a reduction in the permeability coefficient. Xanthan gum hydration takes time, and a lot of crystals are produced in XGS as the curing age increases; these crystals fill larger pores, resulting in the permeability coefficient decrease. At last, a model was developed to predict the permeability coefficient of XG-improved silty soil by using the initial dry density, XG-soil ratio, and curing age. The model can be used to rapidly predict the permeability coefficient of the improved silty soil under different conditions. This research can provide a scientific basis for the safe and scientific application of xanthan gum in seepage damage control and prevention projects.

期刊论文 2024-04-01 DOI: 10.1007/s10064-024-03639-4 ISSN: 1435-9529
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页