在列表中检索

共检索到 1

Zn2+ play an important role in maintaining the normal functioning of living organisms, and excessive or insufficient levels can cause serious health problems. Zn2+ play a vital role in maintaining normal biological functions, and abnormal levels Zn2+ may lead to a range of severe health issues. Therefore, real-time and accurate detection of Zn2+ is critically important. Given the widespread presence of Zn2+ in living organisms and external environments, developing probes suitable for multi-scenario Zn2+ detection is of significant practical value. In this study, a novel probe SSD was synthesized using salicylaldehyde as the precursor, enabling ultra-sensitive Zn2+ detection with a detection limit as low as 9.1 nM. The probe SSD was successfully applied to the detection of Zn2+ in water, soil, and food samples. In addition, an SSD-based Zn2+ smartphone detection platform was developed, which can quickly detect the content of Zn2+ in actual samples. Moreover, due to its excellent optical properties and low toxicity, SSD was able to detect both intracellular and extracellular Zn2+. Most importantly, probe SSD demonstrated the capability to monitor real-time changes in Zn2+ concentrations during cellular oxidative damage, providing valuable insights for research on related physiological diseases.

期刊论文 2025-09-05 DOI: 10.1016/j.molstruc.2025.142461 ISSN: 0022-2860
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页