An anomalous warm weather event in the Antarctic McMurdo Dry Valleys on 18 March 2022 created an opportunity to characterize soil biota communities most sensitive to freeze-thaw stress. This event caused unseasonal melt within Taylor Valley, activating stream water and microbial mats around Canada Stream. Liquid water availability in this polar desert is a driver of soil biota distribution and activity. Because climate change impacts hydrological regimes, we aimed to determine the effect on soil communities. We sampled soils identified from this event that experienced thaw, nearby hyper-arid areas, and wetted areas that did not experience thaw to compare soil bacterial and invertebrate communities. Areas that exhibited evidence of freeze-thaw supported the highest live and dead nematode counts and were composed of soil taxa from hyper-arid landscapes and wetted areas. They received water inputs from snowpacks, hyporheic water, or glacial melt, contributing to community differences associated with organic matter and salinity gradients. Inundated soils had higher organic matter and lower conductivity (p < .02) and hosted the most diverse microbial and invertebrate communities on average. Our findings suggest that as liquid water becomes more available under predicted climate change, soil communities adapted to the hyper-arid landscape will shift toward diverse, wetted soil communities.
Ciprofloxacin (CIP) is an antibiotic used in both human and veterinary medicine. Because it is only partially metabolized, it has been found in sewage sludge, manure, and agricultural soils. Therefore, due to the high persistence and low mobility of CIP in soil, we aimed to evaluate its long-term effect on Enchytraeus crypticus. Three multigenerational and one transgenerational test were performed according to OECD 220 guidelines (2016) on sandy clay soil. The concentrations tested were 0.1, 1.0, 10.0, 100.0, 1000.0 and 5000.0 mg kg- 1 dry soil. For F1, statistical analysis showed differences between the control and all concentrations tested, but no differences among the concentrations. For F2, there was a difference between control and 10 mg Kg -1 and for 10.0 mg Kg -1 compared to 0.1, 1.0 and 5000.0 mg Kg -1. For F3, no statistical difference was observed between any of the concentrations. When comparing the generations among themselves, there were significant differences between F1 and F2 and F1 and F3 for all concentrations. For the transgenerational test, there was no statistical difference between the control and the concentrations tested, nor among the concentrations. We verified a negative effect of CIP on the reproduction of E. crypticus for the first generation, which could be related to oxidative stress, DNA damage and clay content. We also verified that the organisms could develop a tolerance to CIP and that the effects of high clay content could outweigh the effects of CIP in long-term exposure. Due to the high persistence and low mobility of CIP on soil, it may affect other organisms and promote antibiotic resistant genes (ARGs) regardless of E. crypticus tolerance. Therefore, we strongly recommend further studies focusing on long-term effects on different organisms, with a molecular approach, and in different soil types.
It has not been known how immune responses in soil invertebrates occur against microplastics (MPs). This study aims to investigate the effects of MPs on endocytosis, including phagocytosis and pinocytosis, of immune cells of soil invertebrates in the soil ecosystem in the process of bacterial infection. We employed polystyrene micro- plastics (similar to 1 mu m PS MPs) to treat earthworm Eisenia andrei during the infection of Escherichia coli for in vitro (1, 5, 10, and 50 mg/L) and in vivo (1, 10, and 1000 mg/kg dry soil) assays. The results of in vitro migration assay revealed that MPs caused inhibitory effects on the phagocytosis, pinocytosis and oxidative stress in coelomocytes. Soil bioassay also confirmed that endocytosis of coelomocytes and mitochondrial damages in the intestinal epithelium were significantly altered in the polluted soil with MPs. Thus, MPs induced adverse effects to inhibit bacterial endocytosis, which may disturb the immune system of soil invertebrates. This study is the first report on the inhibition of phagocytosis in the soil invertebrates by MPs. These findings contribute to understanding the response of soil invertebrates, which play important roles in the soil food web with cellular level towards microplastic pollution in soil.
Predicting the impacts of climate change on aquatic ecosystems in the Subarctic is challenging due to the presence of permafrost and the wide range of geomorphologic conditions found across this heterogeneous landscape. To accurately predict how fish and wildlife will be impacted by climate change, it is critical to identify the habitat requirements of important prey such as macroinvertebrates. To better understand spatial heterogeneity in macroinvertebrate populations and identify key habitat requirements, we compared taxonomic richness, relative abundance, and density of macroinvertebrate populations in seven different lake basin types, spanning a large latitudinal and elevational gradient of subarctic Alaska. We used nonparametric statistics and NMDS to relate macroinvertebrate community metrics to landscape characteristics such as sedimentary deposit type, permafrost extent, geomorphology, and lake basin type, as well as chemical conditions within the lakes. Macroinvertebrate richness was highest in areas with continuous permafrost, largely driven by richness in dipterans. Lake water chemistry influenced taxa richness, relative abundance, and densities of both macroinvertebrates and microcrustaceans. Invertebrate densities were greatest in regions (parks) with higher nutrient concentrations and specific conductance, with higher relative abundance of dipterans in older landscape terrains (Yedoma) while a higher relative abundance of microcrustaceans was found in landscapes with little peat accumulation (sand dunes). As climate-driven permafrost thaw continues across the subarctic, shifts in pH, specific conductance, and calcium are likely to occur due to changes in active layer thickness and surface and groundwater flow paths that drive nutrient and solute delivery. Changes in invertebrate relative abundance and density are most likely to occur in ETOC and Diptera, two of the most ecologically important invertebrate groups found in subarctic lakes.
Within an identical soil environment, various pesticides may be commonly identified, but their collective toxicological traits have not been thoroughly investigated. This research sought to elucidate the potential consequences of concurrent exposure to multiple pesticides on soil organisms, with a specific emphasis on examining alterations in transcript and enzyme levels induced by the co-presence of acetamiprid (ACE) and tetraconazole (TET) in earthworms (Eisenia fetida). The results indicated that the joint presence of ACE and TET exhibited an acute synergistic impact on the organisms. Notably, there was a significant elevation in the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), coupled with a substantial suppression of caspase-9 and caspase-3 contents observed in the majority of both individual and combined groups. These findings suggested the occurrence of oxidative stress and cell death. Furthermore, the study revealed a substantial up-regulation of three genes (gst, sod, and crt) and down-regulation of one gene (mt) after exposure to individual pesticides and their mixtures. This pointed towards dysregulation of detoxification processes and oxidative damage. Collectively, the study underscored that the widespread application of these two pesticides might pose potential ecotoxicological risks to the soil ecosystem. In essence, these discoveries enriched our insights into the potential hazards linked to the simultaneous use of multiple pesticides in real-world settings. They underscored the significance of taking into account both synergistic effects and employing judicious pesticide management strategies to alleviate ecological impacts.
The decontamination of polluted soils is a major socioeconomic issue in many industrialized countries. In situ remediation approaches are nowadays preferred to ex situ techniques, but they require among others the use of bioindicators, which are sensitive to the progressive depollution on health effects. Animal species have been mainly used so far to monitor aquatic and air pollution. Current research focuses on the development of living indicators of soil pollution. In this study, the garden snail Helix aspersa maxima was acutely exposed to cadmium, one major soil contaminant causing severe health effects, including nephrotoxicity. Kidney and hemolymph were sampled and analyzed by a H-1-NMR-based metabonomic approach. Shortly after Cd exposure, numerous metabolic changes occurred in the hemolymph and kidney extracts. Altogether, they were indicative of a switch in energy sources from the Krebs cycle towards b-oxidation and the utilization of stored galactogen polysaccharides. Then, the activation of antioxidant defenses in the renal cells was suggested by the alteration in some precursors of glutathione synthesis, such as glutamate, and by the release of the antioxidant anserin. Cell membrane damage was evidenced by the increased levels of some osmolytes, betaine and putrescine, as well as by a membrane repair mechanism involving choline. Finally, the development of metabolic acidosis was suggested by the elevation in 3-HMG in the hemolymph, and the more pronounced lysine levels were consistent with acute excretion troubles. Cd-induced renal damage was objectified by the increased level of riboflavin, a recognized biomarker of nephrotoxicity.
Ongoing climate change threatens the biodiversity of glacier-fed river ecosystems worldwide through shifts in water availability and timing, temperature, chemistry, and channel stability. However, tropical glacier-fed rivers have received little attention compared to those in temperate and Arctic biomes, despite their unique biodiversity potentially responding differently due to additional stress from higher altitude locations thus lower oxygen availability, diurnal freeze-thaw cycles, and annual monsoon rainfall disturbances. However, tropical glacier-fed rivers have received little attention compared to those in temperate and Arctic biomes, despite their unique biodiversity potentially responding differently due to additional stress from higher altitude locations thus lower oxygen availability, diurnal freeze-thaw cycles, and annual monsoon rainfall disturbances. This study quantified aquatic biodiversity responses to decreasing glacier cover in the Cordillera Blanca range of the Peruvian Andes. Ten rivers were studied along a gradient of decreasing glacier cover in the Par & oacute;n, Huaytapallana, and Llanganuco basins, with a specific focus on macroinvertebrates and physicochemical parameters in both the dry and wet seasons. We found higher temperatures, more stable and lower turbidity rivers as glacier cover decreased, which were related significantly to higher local diversity and lower beta-diversity. Analysis of similarity revealed significant differences in the macroinvertebrate community among rivers with high, medium, or low glacier cover, illustrating turnover from specialists to generalists as glacial influence decreased. Redundancy analysis demonstrated that there were more species found to prefer stable beds and water temperatures in medium and low glacier cover in a catchment rivers. However, certain taxa in groups such as Paraheptagyia, Orthocladiinae, Anomalocosmoecus, and Limonia may be adapted to high glacial influence habitats and at risk of glacier retreat. Although species composition was different to other biomes, the Cordillera Blanca rivers showed similar benthic macroinvertebrate biodiversity responses to glacier retreat, supporting the hypothesis that climate change will have predictable effects on aquatic biodiversity in mountain ranges worldwide. Ongoing climate change threatens glacier-fed river ecosystems globally, impacting biodiversity through shifts in water availability, temperature, and chemistry. Tropical glacier-fed rivers, like those in the Peruvian Andes, are understudied despite unique stressors. This study examined biodiversity in 10 rivers along a glacier cover gradient. Results showed higher temperatures and stability as glacier cover decreased, correlating with increased local diversity. Analysis revealed turnover in macroinvertebrate communities with reduced glacial influence. Certain taxa may be vulnerable to glacier retreat. Despite differences from other regions, findings support predictable biodiversity responses to climate change in mountainous areas.image
In fact, less than 1% of applied pesticides reach their target pests, while the remainder pollute the neighboring environment and adversely impact human health as well as non-target organisms in agricultural ecosystem. Pesticides can contribute to the loss of agrobiodiversity, which are essential to maintaining the agro-ecosystem's structure and functioning in order to produce and secure enough food. This review article examines the negative effects of pesticides on non-target invertebrates including earthworms, honeybees, predators, and parasitoids. It also highlights areas where further research is needed to address unresolved issues related to pesticide exposure, aiming to improve conservation efforts for these crucial species. These organisms play crucial roles in ecosystem functioning, such as soil health, pollination, and pest control. Both lethal and sub-lethal effects of pesticides on the selected non-target invertebrates were discussed. Pesticides affect DNA integrity, enzyme activity, growth, behavior, and reproduction of earthworms even at low concentrations. Pesticides could also induce a reduction in individual survival, disruption in learning performance and memory, as well as a change in the foraging behavior of honeybees. Additionally, pesticides adversely affect population growth indices, reproduction, development, longevity, and consumption of predators and parasitoids. As a result, pesticides must pass adequate ecotoxicological risk assessment to be enlisted by regulatory authorities. Therefore, it is important to adopt integrated pest management (IPM) strategies that minimize pesticide use and promote the conservation of beneficial organisms in order to maintain agrobiodiversity and sustainable agricultural systems. Furthermore, adopting precision agriculture and organic farming lessen these negative effects as well.less than