共检索到 45

This study was carried out to evaluate the interaction between terrestrial food crop plants and microplastics (MPs) with a focus on understanding their uptake, effects on growth, physiological, biochemical, and yield characteristics of two different cultivars of Solanum tuberosum L. i.e., Variety-1, Astrix (AL-4) and Variety-2, Harmes (WA-4). Polyethylene (PE), polystyrene (PS), and polypropylene (PP) spheres of size 5 mu m were applied to the soil at concentrations of 0 %, 1 %, and 5 %. Morphological parameters, including seed germination rate, shoot and root lengths, leaf area, and fresh and dry biomass of plants, got reduced significantly with the increase in MP concentration. PS MPs caused the most negative impact, particularly at 5 %, leading to the greatest decline in growth and Na, Mg, Zn, Cu, Ni, and Mn nutrient content. The highest DPPH scavenging activity was observed in the 5 % PS MPs treatment with approximately a 45.34 % increase from the control, indicating its potential to enhance antioxidant activity in response to stress caused by PS MPs. Both reducing and non-reducing sugar contents and total proteins were also decreased significantly. Vitamin C content exhibited a significant increase in response to MPs, with the highest levels recorded under 5 % PS MPs treatments. This suggests an adaptive antioxidant response to mitigate oxidative damage induced by MPs. SEM analysis revealed tissue infiltration of MP particles in shoots, leaves, and tubers of both varieties. Among MPs, PS had the most detrimental effects, followed by PP and PE, with higher concentrations increasing the negative impact.

期刊论文 2025-09-01 DOI: 10.1016/j.cpb.2025.100496

The negative impact of climate change is potentially damaging agroecosystem services that have constrained agricultural production and caused water scarcity in Central Asian countries, particularly in Uzbekistan. This study evaluates the efficiency of full (FDI) and deficit (DDI) drip irrigation regimes for amaranth (Amaranthus spp.) cultivation in the Tashkent region of Uzbekistan using the HYDRUS-1D simulation model. Field experiments were conducted over two growing seasons, accompanied by soil moisture monitoring, root zone analysis, and crop performance measurements while the accuracy of the obtained results was assessed against ground measured data. The results showed that compared to the FDI regime, amaranth under the DDI improved water productivity by 56.5% while exhibiting tolerance to water scarcity. The Pearson correlation analysis revealed a strong relationship between the simulated and observed SWC data for both irrigation regimes (R2 = 0.862 for FDI and R2 = 0.936 for DDI), indicating the model's predictive reliability. Although FDI produced higher yield (2004 kg/ha) over the two-year period, which was 25% (2 t ha-1) higher than the DDI regime (1,604 kg/ha). However, DDI demonstrated significantly greater water productivity (56.5% higher), attributed to reduced unproductive evaporation and the C4 nature of amaranth. Root system analysis revealed deeper penetration under DDI, suggesting adaptive responses to water stress. The findings of this study suggest that implementing precise irrigation technology in amaranth cultivation combined with the use of the HYDRUS-1D model in the context of inevitable climate change, can ensure the long-term sustainable management of water and land resources in arid regions.

期刊论文 2025-06-04 DOI: 10.3389/fsufs.2025.1612679

Salt-frost heaving of canal foundation saline soils is the primary cause of damage to the lining structures of water conveyance channels in the Hetao Irrigation District, China. Chemical solidification of saline soils can mitigate frost heave; however, application studies exploring the salt-frost heave resistance of saline soils solidified through the synergistic use of multiple industrial solid wastes in the Hetao remain limited. This study employs a sustainable solidifying material composed of slag, fly ash, coal gangue, coal-based metakaolin, carbide slag, and potassium silicate activator. The optimal mix ratio was determined using Response Surface Methodology (RSM). Unidirectional freezing tests evaluated the effects of solidification material content, curing period, and salt content on salt-frost heave development. Unconfined compressive strength tests assessed salt-frost heave durability of high-salinity solidified saline soils. Microstructural characteristics were analyzed using Scanning Electron Microscopy (SEM), Mercury Intrusion Porosimetry (MIP), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TG) to investigate resistance mechanisms. Results indicated that the industrial waste materials exhibited synergistic effects in an alkaline environment, with the optimal mix ratio of slag, fly ash, coal gangue, coal-based metakaolin, carbide slag, and potassium silicate at 21:25:33:8:7:6. Increasing solidified material content and curing time significantly enhanced salt-frost heave resistance, as evidenced by improved freezing temperature stability, deeper freezing front migration, and reduced salt-frost heave rate. The optimal group (35 % solidifier, 7 days curing) showed a 5.53 degrees C increase in stable freezing temperature, a 3.78 cm upward migration of the freezing front, and a 3.94 % reduction in salt-frost heave rate. Salt-frost heave durability of highsalinity soils improved post-solidification, with a gradual decrease in the degradation of unconfined compressive strength, achieving a minimum weakening of 21.13 %. Hydration products C-S-H, C-A-H, and AFt filled voids between soil particles, restricting water and salt migration. Hydration of industrial wastes reduced free water and SO24 content, decreasing water-salt crystallization and mitigating salt-frost heave. The findings provide an engineering reference for in-situ treatment of salt-frost heaving in saline soils of water conveyance channels in the Hetao Irrigation District.

期刊论文 2025-05-01 DOI: 10.1016/j.coldregions.2025.104447 ISSN: 0165-232X

Analyzing the ecological and behavioral effects of changes in irrigation practices in oases provides valuable insights for water resource management and the sustainable development of oasis agriculture in arid regions. Taking the Yanqi Basin as a case study, this research draws on long-term empirical data and remote sensing information to evaluate the ecological and irrigation behavior effects resulting from shifts in irrigation methods. And explores the deep societal causes behind these behavioral changes. The findings demonstrate: (1). Between 2000 and 2010, the rapid adoption of groundwater extraction and mulched drip irrigation (MDI) technology temporarily alleviated the water supply-demand contradiction. However, from 2010 to 2020, as the adoption of water-saving practices significantly expanded and agricultural irrigation areas grew substantially, the irrigation paradox emerged, where increased efficiency paradoxically led to greater water consumption. (2). From 2000 to 2020, the groundwater table depth in the irrigation district dropped by 8-16 m, total soluble salt content decreased by 2-5 g/L, and soil salinity decreased by 4-12 g/kg. The proportion of severely salinized and saline soil areas fell from 21.74% in 1999 to 9.75% in 2020. The longstanding salinization issues that had plagued the irrigation district were effectively mitigated with the widespread adoption of MDI. (3). The irrigation district's vegetation ecological quality index (VEQI) showed a slow but steady upward trend in cultivated areas over the years. In contrast, natural vegetation areas such as forests and grasslands exhibited an initial increase followed by a decline. The trends in VEQI responded well to changes in irrigation practices. (4). The economic benefits driven by water-saving technologies and the expansion of cultivated land are deep societal factors behind the changes in irrigation behavior. These benefits also fostered improvements in users' understanding and awareness of irrigation practices. The shift in irrigation methods in the Yanqi Basin has led to a decline in groundwater levels, an irrigation paradox, and moderate damage to natural vegetation. However, it has had a significant positive impact on improving regional groundwater quality and mitigating soil salinization. Furthermore, it facilitates the further exploration of regional water conservation potential, enhancing the research on the regional water and soil resource management system.

期刊论文 2025-04-28 DOI: 10.1038/s41598-025-97991-4 ISSN: 2045-2322

The studied region is located in the southwestern Iran and on the border of Iran and Iraq. In the past, this region had dense palm groves and abundant plants. However, due to the decrease in upstream discharge, in recent years, saline and sodium seawater has intrusion in the river and affected the agricultural lands along its sides. This event has caused irreparable and serious damage to the agricultural industry in the region, turning this area into a graveyard of date palm trees. Understanding the characteristics of agricultural soils for their improvement and/or planting appropriate plants is one of the goals of sustainable agriculture. Considering the damage of the studied area from the intrusion of salt water in the Arvand River, this study investigated important characteristics of soil salinity including EC, pH, C.E.C, SAR and ESP. In this research, sampling of agricultural soils along the riverside was carried out in three different horizons and two line parallel to the river and at two different distances. Statistical methods of correlation coefficient, hierarchical analysis and factor analysis were used to identify the factors affecting soil quality and the relationships between parameters. The results showed that due to the intrusion of sodium seawater, the soils of the studied area have become saline-sodium, and the salinity level in the soils near the river mouth is higher than that in the soils on the upstream side of the river. In terms of fertility, the cation exchange capacity is in the medium range, and the clay texture and abundant organic matter of the soil as a result of the remaining plant and tree residues have an important effect on this parameter.

期刊论文 2025-04-01 DOI: 10.1007/s13201-025-02392-7 ISSN: 2190-5487

Globally, salt stress is one of the most significant abiotic stresses limiting crop production in dry-land regions. Nowadays, growing crops in dry-land regions under saline irrigation is the main focus. Soil amendment with organic materials has shown the potential to mitigate the adverse effects of salinity on plants. This study aimed to examine the ameliorative impact of soil amendment (manure + sandy, compost + sandy, clay + sandy and sandy soil) on the growth, yield, physiological, and biochemical attributes of Hedysarum scoparium Fisch. et Mey (HS) and Avena sativa L. (OT) under fresh and saline water irrigation in dry-land regions. The results showed that salt stress negatively affected both plant species' growth, physiological traits, yield, and chloride ions. In response to saline irrigation, plants of both species increased catalase (CAT) and ascorbate peroxidase (APX) activities as part of a self-defense mechanism to minimize damage. Salt stress also significantly raised levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and chloride ions (Cl). However, soil amendment treatments like manure + sandy and compost + sandy soil countered the negative effects of saline irrigation, significantly improving plant growth and yield compared with sandy soil. Thus, organic soil amendment is a promising strategy for sustainable crop production under saline irrigation in dry-land regions. This study provides valuable insights into enhancing agricultural production by fostering resilient halophytes and salt-tolerant plant species in challenging environments.

期刊论文 2025-03-09 DOI: 10.3390/plants14060855 ISSN: 2223-7747

BACKGROUND Chaetanaphothrips orchidii is an invasive thrips of tropical origin that was detected in 2016 in Spanish citrus, where it can damage up to 70% of the fruit. Pupation site and emergence rates are key biological traits for thrips management that are unknown for C. orchidii. Here, we determined the pupation site and period of C. orchidii in citrus and evaluated the effect of soil moisture on adult emergence. RESULTS A two-year field study showed that C. orchidii pupated in the soil from May to December in commercial citrus orchards. Chaetanaphothrips orchidii emergence was very low compared to other harmful thrips species in citrus. Using D/E traps, we demonstrated that the thrips emerged mainly from wet areas near drip irrigation emitters during the summer, and its emergence was strongly related to the soil water content. A laboratory experiment confirmed that C. orchidii did not emerge at RH below 70%, and its emergence peaked at 97% RH. CONCLUSIONS Our results have important implications for the sustainable management of C. orchidii because soil moisture is very low in Mediterranean citrus during summer, except in areas near drip irrigation emitters. Therefore, these and other potential high-humidity areas should be considered crucial targets to manage this pest in citrus during summer, reducing cost and labor.

期刊论文 2025-03-01 DOI: 10.1002/ps.8558 ISSN: 1526-498X

Soil salinization is a severe environmental issue limiting the growth and yield of crops worldwide. Subsurface drip irrigation with micro-nano bubble hydrogen water (SDH) is an innovative way to realize the role of hydrogen gas (H2) in improving plant resistance to salt stress in practical agricultural productions. Nonetheless, limited information is available on how SDH affects the plant salt tolerance performance. Especially, the underlying physiological respond, hormone-regulated and soil microbial-mediated mechanisms have not been reported so far. In this study, the effects of SDH on lettuce (Lactuca sativa L.) growth, photosynthesis, root development, antioxidant system, phytohormone, and soil microbial community were investigated under normal and salt stress conditions. The results showed that, with salt stress, SDH significantly enhanced the lettuce fresh weight, photosynthesis activity, and root growth. The leaf antioxidant enzyme activities increased and reactive oxygen species (ROS) content decreased to reduce the oxidative damage. The decreased malondialdehyde (MDA) content indicated a low membrane lipid peroxidation responsible for cellular damage. SDH also helped to maintain osmotic homeostasis, which was reflected by the increased soluble protein (SP) content. Reduced Na+/ K+ ratio and ROS did not trigger excessive production of stress response hormones abscisic acid (ABA) and jasmonic acid (JA), which alleviated the mediated growth inhibition effects. SDH enriched the abundance of the plant growth-promoting rhizobacteria (PGPR) in the soil, such as Arthrobacter and Pseudomonas. That might be the reason for explaining the increase in hormone indoleacetic acid (IAA) in lettuce and 1-aminocyclopropane-1carboxylate (ACC) deaminase activity in the soil, which was beneficial for inhibiting ethylene production and promoting plant growth. Under the normal condition, variations of physiological and growth indicators as affected by SDH were similar to those under the salt stress condition, except for root development. High concentration of dissolved hydrogen gas in water might expel the oxygen. The induced soil anoxic environment limited oxygen diffusion, in turn inhibited root respiration and growth. The effect of hydrogen concentration on the plant tolerance against salt stress under different salt content could be further studied.

期刊论文 2025-03-01 DOI: 10.1016/j.apsoil.2025.105948 ISSN: 0929-1393

Through a paddy soil column experiment, we comprehensively evaluated the effects of three irrigation practices and three nitrogen (N) fertilizer application strategies on NH3 volatilization, N2O emissions, and rice yields during the rice growing season to identify the optimal irrigation and fertilization combination technique to reduce both NH3 and N2O losses in paddy soil while sustaining rice yield. In addition, we integrated molecular biology techniques (Quantitative PCR) to establish correlations between environmental factors and the abundance of N cycling-related soil microbial functional genes, revealing the intricate interactions between NH3 volatilization and N2O emissions under varied coupling irrigation and fertilization schemes. Our results clearly showed a trade-off relationship between N2O and NH3 emissions under water-saving irrigation practices (controlled irrigation (CI) and intermittent irrigation (II)) coupling with traditional fertilizer urea. Compared with continuous flooding (CF) practice, both CI and II treatments reduced NH3 volatilization by 36.3-73.9%, while increasing N2O emissions by 1483.2-2246.2% during the rice growing season. Notably, the combination application of CRF under CI mode (CI-CRF) significantly reduced NH3 volatilization by 65.0% during the rice growing season, compared to the conventional II-Urea approach. Although the impact on N2O emissions was modest, CI-CRF strategy still achieved a 4.6% reduction in N2O emissions, thus tackling the trade-offs between two important environmentally damaging gases under water-saving irrigation. The suppression of NH3 volatilization was primarily attributed to the CI-CRF strategy lowering NH4+-N concentrations in flooding water, while the reduction in N2O emissions was associated with an increase in soil nirS and nosZ gene abundances. Further estimates indicated that the CI-CRF strategy could potentially reduce NH3 volatilization by 259.2 Gg N yr-1 and N2O emissions by 3.1 Gg N yr-1 in single-crop paddy field in China, compared with traditional II-Urea approach. Therefore, the optimal reduction of gaseous N loss, coupled with yield enhancement, could be achieved through the synergistic strategy of CI-CRF in single-crop rice cultivation ecosystems. Future studies should focus on fieldbased experiments that explore the long-term effects of CI-CRF combinations under varying soil types, climates, and rice cultivation systems.

期刊论文 2025-03-01 DOI: 10.1016/j.jenvman.2025.124695 ISSN: 0301-4797

Using tapes in drip irrigation is associated with environmental problems due to the accumulation of tapes in agricultural areas. Farmers either leave them on the fields or burn them or bury them. All three of these methods pose dangerous environmental hazards. To address this issue, it is recommended that these materials be produced from or with biodegradable materials. In this study, a biodegradable additive was used as a degradation accelerator in the production of tapes. After the production of these tapes, they were used under real conditions and during a growing season and in two treatments: below and on the soil surface, along with a canopy and without shade (beans and radishes). After 6 and 11 months, the tapes were sampled to investigate their degradation. The results showed that tapes made with oxo as an additive began to degrade more quickly than did conventional tapes. A reduction in properties such as weight (p 0.05), Young's modulus (p < 0.05) and toughness (p < 0.05) in tapes produced with oxo additives shows more and faster degradation than conventional tapes. Therefore, the use of oxo master batches in the production of tapes is possible and useful.

期刊论文 2025-02-01 DOI: 10.1002/ird.3002 ISSN: 1531-0353
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共45条,5页