Purpose: Considering that the field dodder is one of the most dangerous parasitic weeds that causes serious damage to cultivated crops, this study aimed to evaluate the efficiency of different control methods against field dodder and the damage caused by the field dodder to eggplant. As well, to determine the isothiocyanate content of turnip and broccoli plants using GC-MS analysis. Research Method: This study was conducted during 2020 and 2021. The experiment examined control methods involving turnip and broccoli as pre-cultivation plants, later both incorporated into the soil separately during specific growth stages, and then both covered and uncovered with black polyethylene mulch, and black polyethylene mulch alone. Controls included plots free of field dodder (Control 1) and plots totally infested with field dodder (Control 2). Finally, all plots were cultivated with eggplant seedlings on rows. Findings: The efficacy of control methods against field dodder in eggplant plots reached 95.81% in TM (turnip+BP mulch) , 92.30% in BM (broccoli+BP mulch), 91.25% in M (black polyethylene mulch alone), 68.26% in T (turnip alone), and 62.58% in B (broccoli alone) treatments. The highest eggplant yield of 8.396 tons/da was achieved in TM treatment. The field dodder caused a yield loss in eggplant by 82.16%, a decrease in eggplant height by 31.12%, and by 58.99% in the number of eggplant fruits in the Con 2 treatment, where the plots were fully infested with filed dodder. Originality/value: The efficiency of cruciferous plants against field dodder is attributed to their isothiocyanates content as the highest percentage of isothiocyanate compounds was found in turnip by 56.6% and the lowest in broccoli by 30.47%.
The continuous release of glucosinolates into the soil by Brassicaceae root exudation is a prerequisite to maintaining toxic levels of breakdown products such as isothiocyanates (ITCs). ITCs influence plant and microbial diversity in ecosystems, while fungi and Rhizobiaceae are particularly injured. Studies explaining the molecular mechanisms of the negative effects are presently limited. Therefore, we investigated the early effects of cyclic ITC goitrin on proteomes of the host and symbiotic Mesorhizobium loti in the nodules of Lotus japonicus and of free-living bacteria. In the nodules, many host proteins had a higher abundance, among them, peroxidases and pathogenesis-related PR-10 proteins functioning in the abscisic-acid-activated signaling pathway. In the microsymbiont, transporter proteins as a prominent group are enhanced; some proteins involved in N-fixation decreased. The proteomes give a report about the loss of immunity suppression resulting in the termination of symbiosis, which initiates nodule senescence. Free-living M. loti are severely damaged, indicated, i.a., by a decrease in transporter proteins, the assumed candidates for goitrin protein complex formation, and high proteolysis. The production of chicoric acid by the accompanying bacteria is inhibitory for M. loti but connected to goitrin elimination, as confirmed by mass spectrometric (MS) analysis. In summary, the nodulation process is severely affected by goitrin, causing nodule dysfunction and failed nodule development. N deficiency conditions leads to yellowish leaves and leaf abscission.