Aerosol optical properties, including absorption and scattering coefficients (B-abs, and B-scat), extinction coefficient (B-ext), single scattering albedo (SSA), and so forth, are critical metrics to estimate the radiative balance of the atmosphere. However, their ground measurements are sparsely distributed in the world, where Central Asia is void in these measurements. We had been performing the measurements of AOPs and BC with a photoacoustic extinctiometer (PAX) in Jimunai, a border town of China neighboring Kazakhstan, Central Asia, from Aug 2016 to Apr 2019. This three-year study first reported statistically significant trends of B-abs, B-scat, B-ext, SSA, and derived concentrations of BC (Mann-Kendall trend test, p-value 0.05) in the Central-Asian area. B-abs and B-scat show increasing trends and SSA was decreasing determined by the greater increasing pace of B-abs than B-scat. Seasonal and diurnal variations of the AOPs were associated with climate shift and residents' commute activity, respectively. The difference in the magnitudes and trends of AOPs between the measurements and satellites' observations advise that more care should be invested when choosing remote-sensing data to represent the AOPs at a specific site. The increasing trend of derived BC concentrations is reflected in the deposition record of BC in a snowpit of the nearby Muz Taw glacier. We suppose that the dramatically increasing BC particles emitted from Jimunai are significant factors triggering the melting of the adjacent mountain glaciers. The outflow of dust from the neighboring Gurbantiinggiit Desert could occasionally invade into Jimunai and deteriorate the local air quality, as evidenced by a probable dust event captured by the PAX on Feb 15, 2018. Finally, we outlook the future perspectives of measurements in Jimunai as a long-standing station.
Air pollution is a global issue that often transcends national borders, leading to disputes over environmental concerns and climate-mitigation responsibilities. Between March and July 2020, we collected aerosol samples in Jimunai, a town in western China neighboring Kazakhstan, to assess transboundary air pollution in the region. Our analysis focused on major water-soluble inorganic ions (WSIs), with Ca2+ and SO42- accounting for almost 60% of the total ion loading. The ratio of cations to anions was greater than one (1.33 & PLUSMN; 0.27), indicating alkaline aerosols during the sampling period. Our results suggest that the pollutants measured were primarily sourced from Kazakhstan, as demonstrated by local meteorological data, air-mass trajectory analysis, and pollutant emission inventories in Kazakhstan. Correlation and primary component analysis indicated that NH4+ played an important role in neutralizing NO3- and SO42-, while Cl- was significantly depleted by the probable reaction HNO3 & UARR; + NaCl = HCl & UARR; + NaNO3. These findings highlight the need for continued monitoring and regulation of air pollution sources in the region to address transboundary air pollution.