额尔齐斯河流域受地理条件的影响,流域内水文气象站点较少,基础资料匮乏,而融雪洪水在该流域的汛期及水资源管理上有着较大影响。本研究通过应用降水和气温的再分析产品及AVHRR积雪数据,利用K-means聚类法进行不同径流时期特点的划分,并在不同时期构建相应SRM+LSTM模型,并使用2009年数据及2023年实地观测的径流数据进行验证。结果表明:再分析产品CMFD能够较好地应用于额尔齐斯河流域,并能根据降水、温度、积雪及径流间的关系得到不同径流划分时期,即12月11日—次年4月10日为积雪退水期、4月11日—8月10日为融雪降水产流期、8月11日为降水产流期。SRM模型模拟效果较差,大部分径流纳什效率系数(NSE)<0;而SRM+LSTM模型能够较好地模拟该流域的不同时期的径流,决定系数R2均能达到0.5以上,纳什效率系数也能达到0.5以上,证明SRM+LSTM模型能够较好地应用于该地区,精度较高。
额尔齐斯河流域受地理条件的影响,流域内水文气象站点较少,基础资料匮乏,而融雪洪水在该流域的汛期及水资源管理上有着较大影响。本研究通过应用降水和气温的再分析产品及AVHRR积雪数据,利用K-means聚类法进行不同径流时期特点的划分,并在不同时期构建相应SRM+LSTM模型,并使用2009年数据及2023年实地观测的径流数据进行验证。结果表明:再分析产品CMFD能够较好地应用于额尔齐斯河流域,并能根据降水、温度、积雪及径流间的关系得到不同径流划分时期,即12月11日—次年4月10日为积雪退水期、4月11日—8月10日为融雪降水产流期、8月11日为降水产流期。SRM模型模拟效果较差,大部分径流纳什效率系数(NSE)<0;而SRM+LSTM模型能够较好地模拟该流域的不同时期的径流,决定系数R2均能达到0.5以上,纳什效率系数也能达到0.5以上,证明SRM+LSTM模型能够较好地应用于该地区,精度较高。