Soil Moisture (SM) is a key parameter in northern Arctic and sub-Arctic (A-SA) environments that are highly vulnerable to climate change. We evaluated six SM satellite passive microwave datasets using thirteen ground-based SM stations across Northwestern America. The best agreement was obtained with SMAP (Soil Moisture Active Passive) products with the lowest RMSD (Root Mean Square Difference) (0.07 m$3$3 m${-3}$-3) and the highest R (0.55). ESA CCI (European Space Agency Climate Change Initiative) also performed well in terms of correlation with a similar R (0.55) but showed a strong variation among sites. Weak results were obtained over sites with high water body fractions. This study also details and evaluates a dedicated retrieval of SM from SMOS (Soil Moisture and Ocean Salinity) brightness temperatures based on the $\tau -\omega$tau-omega model. Two soil dielectric models (Mironov and Bircher) and a dedicated soil roughness and single scattering albedo parameterization were tested. Water body correction in the retrieval shows limited improvement. The metrics of our retrievals (RMSD = 0.08 m$3$3 m${-3}$-3 and R = 0.41) are better than SMOS but outperformed by SMAP. Passive microwave satellite remote sensing is suitable for SM retrieval in the A-SA region, but a dedicated approach should be considered.
2024-12-31 Web of ScienceThe tau -omega model is expanded to properly simulate L -band microwave emission of the soil-snow-vegetation continuum through a closed -form solution of Maxwell's equations, considering the intervening dry snow layer as a loss -less medium. The error standard deviations of a least -squared inversion are 0.1 and 3.5 for VOD and ground permittivity, over moderately dense vegetation and a snow density ranging from 100 to 400 kg m -3 , considering noisy brightness temperatures with a standard deviation of 1 kelvin. Using the Soil Moisture Active Passive (SMAP) satellite observations, new global estimates of VOD and ground permittivity are presented over the Arctic boreal forests and permafrost areas. In the absence of dense in situ observations of ground permittivity and VOD, the retrievals are causally validated using ancillary variables including ground temperature, above -ground biomass, tree height, and net ecosystem exchange of carbon dioxide. Time -series analyses promise that the new data set can expand our understanding of the land-atmosphere interactions and exchange of carbon fluxes over Arctic landscapes.
2024-05-15 Web of ScienceThe freezing front depth (z(ff)) of annual freeze-thaw cycles is critical for monitoring the dynamics of the cryosphere under climate change because z(ff) is a sensitive indicator of the heat balance over the atmosphere-cryosphere interface. Meanwhile, although it is very promising for acquiring global soil moisture distribution, the L-band microwave remote sensing products over seasonally frozen grounds and permafrost is much less than in wet soil. This study develops an algorithm, i.e., the brightness temperature inferred freezing front (BT-FF) model, for retrieving the interannual z(ff) with the diurnal amplitude variation of L-band brightness temperature (?T-B) during the freezing period. The new algorithm assumes first, the daily-scale solar radiation heating/cooling effect causes the daily surface thawing depth (z(tf)) variation, which leads further to ?T-B; second, ?T-B can be captured by an L-band radiometer; third, z(tf) and z(ff) are negatively linear correlated and their relation can be quantified using the Stefan equation. In this study, the modeled soil temperature profiles from the land surface model (STEMMUS-FT, i.e., simultaneous transfer of energy, mass, and momentum in unsaturated soil with freeze and thaw) and T-B observations from a tower-based L-band radiometer (ELBARA-III) at Maqu are used to validate the BT-FF model. It shows that, first, ?T-B can be precisely estimated from z(tf) during the daytime; second, the decreasing of z(tf) is linearly related to the increase of z(ff) with the Stefan equation; third, the accuracy of retrieved z(ff) is about 5-25 cm; fourth, the proposed model is applicable during the freezing period. The study is expected to extend the application of L-band T-B data in cryosphere/meteorology and construct global freezing depth dataset in the future.
2023-01-01 Web of ScienceAccurate surface soil moisture (SM) data are crucial for agricultural management in Jiangsu Province, one of the major agricultural regions in China. However, the seasonal performance of different SM products in Jiangsu is still unknown. To address this, this study aims to evaluate the applicability of four L-band microwave remotely sensed SM products, namely, the Soil Moisture Active Passive Single-Channel Algorithm at Vertical Polarization Level 3 (SMAP SCA-V L3, hereafter SMAP-L3), SMOS-SMAP-INRAE-BORDEAUX (SMOSMAP-IB), Soil Moisture and Ocean Salinity in version IC (SMOS-IC), and SMAP-INRAE-BORDEAUX (SMAP-IB) in Jiangsu at the seasonal scale. In addition, the effects of dynamic environmental variables such as the leaf vegetation index (LAI), mean surface soil temperature (MSST), and mean surface soil wetness (MSSM) on the performance of the above products are investigated. The results indicate that all four SM products exhibit significant seasonal differences when evaluated against in situ observations between 2016 and 2022, with most products achieving their highest correlation (R) and unbiased root-mean-square difference (ubRMSD) scores during the autumn. Conversely, their performance significantly deteriorates in the summer, with ubRMSD values exceeding 0.06 m3/m3. SMOS-IC generally achieves better R values across all seasons but has limited temporal availability, while SMAP-IB typically has the lowest ubRMSD values, even reaching 0.03 m3/m3 during morning observation in the winter. Additionally, the sensitivity of different products' skill metrics to environmental factors varies across seasons. For ubRMSD, SMAP-L3 shows a general increase with LAI across all four seasons, while SMAP-IB exhibits a notable increase as the soil becomes wetter in the summer. Conversely, wet conditions notably reduce the R values during autumn for most products. These findings are expected to offer valuable insights for the appropriate selection of products and the enhancement of SM retrieval algorithms.
2022-10Wildfires could have a strong impact on tundra environment by combusting surface vegetation and soil organic matter. For surface vegetation, many years are required to recover to pre-fire level. In this paper, by using C-band (VV/HV polarization) and L-band (HH polarization) synthetic aperture radar (SAR) images acquired before and after fire from 2002 to 2016, we investigated vegetation change affected by the Anaktuvuk River Fire in Arctic tundra environment. Compared to the unburned areas, C- and L-band SAR backscatter coefficients increased by up to 5.5 and 4.4 dB in the severely burned areas after the fire. Then past 5 years following the fire, the C-band SAR backscatter differences decreased to pre-fire level between the burned and unburned areas, suggesting that vegetation coverage in burned sites had recovered to the unburned level. This duration is longer than the 3-year recovery suggested by optical-based Normalized Difference Vegetation Index (NDVI) observations. While for the L-band SAR backscatter after 10-year recovery, about 2 dB higher was still found in the severely burned area, compared to the unburned area. The increased roughness of the surface is probably the reason for such sustained differences. Our analysis implies that long records of space-borne SAR backscatter can monitor post-fire vegetation recovery in Arctic tundra environment and complement optical observations.
2019-10-01 Web of Science