共检索到 2

This study presents a novel investigation into the seismic response of micropiles through shaking table tests, diverging from the predominant reliance on numerical analyses in assessing micropiles in liquefiable sites. Three models of shaking table tests were conducted using Iai scaling rules for physical modelling in 1-g conditions. The investigation reveals a significant dependency of micropile efficiency on the frequency of input motions. During the 2 Hz test, the entire model experienced liquefaction; however, in the 3 Hz test, there was a remarkable 29% reduction in excess pore water pressure. Additionally, the study explores the impacts of varying distances between micropiles and examines how liquefaction influences the induced peak accelerations at different depths within the soil media. Notably, recorded accelerations on the surface decreased by up to 76% in the free field tests during liquefaction. This comprehensive exploration advances our understanding of micropile behaviour under seismic conditions, offering valuable insights for soil improvement projects.

期刊论文 2025-04-01 DOI: 10.1007/s10064-025-04225-y ISSN: 1435-9529

This research addresses experimentally the relationship between the excitation frequency and both hoop and axial wall stresses in a water storage tank. A low-density polyethylene tank with six different aspect ratios (water level to tank radius) was tested using a shake table. A laminar box with sand represents a soil site to simulate Soil-Structure Interaction (SSI). Sine excitations with eight frequencies that cover the first free vibration frequency of the tank-water system were applied. Additionally, Ricker wavelet excitations of two different dominant frequencies were considered. The maximum stresses are compared with those using a nonlinear elastic spring-mass model. The results reveal that the coincidence between the excitation frequency and the free-vibration frequency of the soil-tank-water system increases the sloshing intensity and the rigid -like body motion of the system, amplifying the stress development considerably. The relationship between the excitation frequency and wall stresses is nonlinear and depends simultaneously on both sloshing and uplift. In most cases, the maximum stresses using the nonlinear elastic spring-mass model agree with those from the experiments.

期刊论文 2024-02-25 DOI: 10.12989/sem.2024.89.4.421 ISSN: 1225-4568
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页